A primer of modern cryptography
KNUST University

Gabriel Chénevert
February 5, 2024

a]
Grande
école
d’ingénieurs

mailto:gabriel.chenevert@junia.com

Overview

Introduction

whoami

Gabriel Chénevert

JUNIA, Lille (France)

Head of the Computer Science &
Mathematics department

Interested in information theory:

e signal processing

e error correction

e quantum computing
e cryptography

Class material available at
https://junia.ovh/gch

https://junia.ovh/gch

What is cryptography

Cryptography provides a collection of primitives tand protocols that allow the
manipulation of (digital) information securely even in the presence of adversaries.

A brief timeline of cryptography (source):

Spartan seytale/ Vignere Vernal cipher/ DES Digital AES
stegnography cipher one-time pad algorithm signature algorithm

400
B.C 1465 1917 1975 1989 2001 ZOUST 2009

50 BCl lRﬂﬂl 19201 I9771 199?1 2004l 20081 2021

Ceasar §hiﬁ.-’ Jefferson German RSA Hash cash SHA-3 Bitcoin Quantum
Julius cipher wheel cipher enigma cryptosystem algorithm cryptography

ECC Blockehain

https://ieeexplore.ieee.org/document/9663283

Goal of today: make sense of this

Détails du message

32258.FRAP264.P|

54,

77.145; h
nic314-19.¢

Shannon’s communication model

INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION

1
SIGNAL RECEIVED
SIGNAL

MESSAGE MESSAGE

NOISE
SOURCE

Fig. 1—Schematic diagram of a general communication system.

Claude Shannon, A mathematical theory of communication (1948)

https://culturemath.ens.fr/sites/default/files/p3-shannon.pdf

Encoding

In order to be sent through the communication channel, messages need to be encoded
in a suitable way (and decoded on the other side).

Encodings may achieve different desirable properties:

existence

e compression

e integrity resistance
e confidentiality

e authentication

e non-repudiation

Overview

Secret-key encryption

The secure channel problem

Alice wants to send a message to Bob, but doesn’t want Eve to be able to read it

25
l N\
A i

Secret-key cryptography

A symmetric cipher (or cryptosystem) consists of a pair of functions

m E c D —m
k k

where

e m: original message (plaintext)
e c: encrypted message (ciphertext)

e k: secret shared key

lHlustration

Security level

Definition

The security level of a cryptosystem is (roughly) the log, of the time complexity of
the best known attack against it.

e Can change abruptly if new attack is discovered!
e No greater than key length (brute-force attack)

e Can be smaller. ..

Aside: orders of magnitude

e 25 number of persons in this room
e 27 number of students at KNUST
: number of persons in Kumasi

. number of persons in Ghana

. total world population

: number of views of the most popular video on YouTube

https://www.youtube.com/watch?v=XqZsoesa55w

Computing resources

e 270: estimated number of operations / second performed by general-purpose
computers

e 273: total digital memory available worldwide (in bits)

cf. Hilbert & Lopez (2011)

e 2°7: number of SHA256 hashes computed per second by the Bitcoin network

Current consensus: 128-bit should be un-brute-forceable for the next 30 years

http://bblfish.net/tmp/2012/06/18/Science-2011-Hilbert-60-5.pdf
https://www.blockchain.com/charts/hash-rate

Security levels

Requirements of a symmetric cryptosystem

e Correct decryption : for all k € K and m € M,

D(k, E(k,m)) = m.

¢ Confidentiality : knowledge of the ciphertext should not help an attacker guess
or understand what the message is

(can be formalized)

i.e. there exists no efficient ciphertext-only attacks

Removeable masks

Definition (binary stream cipher)

Any cryptosystem with M = C = {0,1}", K = {0,1}* and

E(k, m) = m @ pad(k)
D(k,c) = ¢ @ pad(k)

where pad : {0,1}* — {0,1}" generates a keystream from the key k

in which @ is the bitwise XOR operator

Example (n = 8)

Alice:
m=11100011 = e3

pad = 01101101 = 6d
c=m® pad = 10001110 = 8e

Bob:
¢ =10001110 = 8e

pad = 01101101 = 6d
m=c®pad =11100011 = e3

Example (n = 128)

from os import urandom
def xor(a,b):
return bytes([x*y for x,y in zip(a,b)])

p = urandom(16)
Alice
m = b"Mask on 128 bits"

c = xor(m,p)

print(" m = ", m.hex())
print("pad = ", p.hex())
print(" ¢ =", c.hex())
m 4d61736b20676e203132382062697473

pad = f31led60c2c59c9eedbad55cd71822d4a
¢ = be7fa5670¢c36a7ce7a9abded13eb5939

Bob

mm = xor(c,p)

print(" ¢ =", c.hex())
print("pad = ", p.hex())
print(" m =", mm.hex())

¢ = be7fa5670c36a7ce7a9abded13eb5939
pad = f31led60c2c59c9eedba855cd71822d4a
m = 4d61736b206T6e203132382062697473

Security requirements (1/2)

Theorem

Stream ciphers decrypt correctly.

Proof.

D(k, E(k, m)) = (m @ pad(k)) & pad(k)
= m @ (pad(k) @& pad(k))
=m0

=m.

Security requirements (2/2)

Theorem (Shannon, 1949)

In the special case { = n, pad(k) = k, a stream cipher provides perfect secrecy (in the
information-theoretic sense).

This special case called one-time pad or Vernam cipher.

But. .. the key need to be as long as the message!

http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

In practice: stream ciphers

We want to keep K = {0,1}* small and work with M = C = {0, 1}* arbitrarily large:

use for keystream function
pad : {0,1}* — {0,1}*

a cryptographically secure pseudo-random number generator (CSPRNG)

with the secret key as seed

Pseudo-random number generators

In [1]: import random
uses *insecure* but efficient Mersenne Twister PRNG
random. seed (12345)
for i in range(16):
print(hex(random.randint(®,2**128))[2:-1])

6facaa5090e5e945452ec40a3193cas
6ed4e94bdfc9e3bl1fcff4545f811ch
bc428d42fa88269287f26aeel75f0cd
25ece8452aa4857e8101e89a95¢5b9
d64a3ce030alfed513ed748bb80e3ba
56eaa3017576714a06057c82527122d
94820a06¢555663f29ef41dodeeadss
6aleccdaa70celb51978cec0495cfad
df8960adleab5cd83b788b660adde3e
96af@dead1fad2962f927291ab721ab
213f191ff56ae7eaea80db0684abs561
f702e8c026784184026530cdd50b612
282fe557578h24268a0417415987baf
9f3180427b1427081f1laflfac2eldac
265015788e7ae9afle8fch74b2d4f32
f79fcaabed7b342b2a3a46677eb14f8

Security requirement for CSPRNGs

To be used as a keystream generator, a PRNG needs to be unpredictable : an attacker
cannot efficiently guess future outputs from previous ones

e All PRNGs are eventually periodic
(deterministic stateful functions with a finite number of internal states)

= in particular, need to have long (> 2!?8) period

e Beware: most "standard” PRNGs are easily predictable!

— related-key attacks on the underlying OTP

Example: Kaspersky's guessable passwords fiasco (2021)

23

https://blog.ledger.com/kaspersky-password-manager

Current recommendations

The eSTREAM project (ECRYPT 2008) proposes

e HC-128, Rabbit, Salsa/Chacha20, SOSEMANUK (software-oriented)
e Grain, MICKEY, Trivium (hardware-oriented)
(all force the PRNG to use a nonce as initial value)

Still need to be careful to seed the CSPRNG with enough entropy: using PID or
timestamps is not a good idea!

= better to use dedicated entropy sources e.g. /dev/urandom, random.org, ...

http://en.wikipedia.org/wiki/Salsa20
https://random.org

The problem with stream ciphers

Mask reuse is a problem: if
c1 = my @ pad
¢ = myp @ pad
then

1D =m®ms.

This means that:

1. Alice shouldn't use the same pad twice (ok using nonces)

2. it can be possible to manipulate the message through the encryption!

E(k,m® A)=E(k,m)& A (malleability)

Different attackers

N\

@
\

Eve (a passive attacker): sees the ciphertext, learns nothing v/

Oscar (an active attacker): is able to modify the ciphertext, may have a different goal !

A different approach: block ciphers

Consider (E, D) a symmetric cipher with M = C.

For given k € I,
Ex:=E(k,-): M —M

admits Dy := D(k, -) as inverse

hence Ej is a permutation of M (bijection from M to M)

E, as a permutation

e.g. with M| =28

M

00000000
00000001
00000010
00000011

11111101
11111110
11111111

Ej

M

11100110
01000101
01001011
11111110

11101110
00010100
11011110

Idea

Ey should be thought of as a pseudo-random permutation of M.

In practice: undistinguishable from a random function M — M.

Allows one to:
e reuse keys (with some care!)

e work with small messages (blocks)

Note: typically |K| < |permutations of M| = |[M|l ~ |[M|M|

ex.: |’C| — |M‘ — 2128' |SM‘ ~ ’M||M| ~ 243556142965880123323311949751266331066368 (|)

Do these things actually exist?

Shannon'’s paradigm: confusion and diffusion (stream ciphers miss the diffusion part)

Essentially all modern examples use an iterative design where the plaintext is encrypted
a certain number of times by a round function performing (a small amount of)
confusion and diffusion

Xo — m,
Xiy1 = R(kiy1,xi), 0<i<r
E(k,m) = x,

preceded by a key scheduling process k — (ki,--- , k).

Famous examples

n-bit block, /-bit key, r rounds
e Lucifer (IBM, 1971) n=1¢ =128, r = 16
e Data Encryption Standard (NIST, 1977) n =64, { =56, r = 16

Successful brute force attack in 1997

Still survived in the form of Triple DES in legacy hardware/software
¢ Rijndael (KU Leuven, 1998) aka Advanced Encryption Standard (NIST, 2000)
n =128, ¢ € {128,192,256}, r € {10,12,14}.

But also: RC5/RC6, IDEA, Serpent, Blowfish/Twofish, ...

Design of DES

16-round Feistel network :
Write each x; = y; | z; left and right parts

Round function:

Yi+1 = Zi

zip1 =y ® F(kiv1,2i)

Easy to implement in hardware
(and invert — exercice!)

https://en.wikipedia.org/wiki/Data_Encryption_Standard#The_Feistel_(F)_function

Security proof

Theorem (Luby-Rackhoff, 1988)

Three rounds of a Feistel network with inner function F a CSPRNG using k as a seed
is computationally undistinguishable from a random permutation.

In practice: increase the number of rounds to take into account the fact that F might
not be a provably good CSPRNG.

Still: the original DES can now be broken by exhaustive key search in a couple of hours
with COPACOBANA

http://www.copacobana.org

Today

In practice: use AES or some other NIST finalist

TrueCrypt - Encryption Algorithm Benchmark

100MB Vv

Modes of operation

Now suppose the message to be encrypted is longer than a single block:

m=my|my|ms| -
How to use a block cipher (e.g. AES) to encrypt m ?

¢ Electronic Code Book (ECB) mode:

ECB mode?

Problem: equal blocks yield equal ciphertexts

Should use (pseudo-)probabilistic encryption:

a given block shouldn't always have the same encryption
~> use of either random value or nonce (counter)

Side effect: need to have |C| > |M]| to make room for redundancy in the ciphertexts

Cipher Block Chaining (CBC) mode

my mo

co = random Initial Value
¢i=E(k,m; ®ci—1) k— E k— E
()] C1 Co

e Encryption is sequential (but decryption can be parallelized)
m; = D(k,c;) © ¢i1

e Message has to be padded to a multiple of the block length

e Crucial that random IV is non-predictable (chosen plaintext attack)

Randomized counter (CTR) mode

co+1 c+2
k— E k— E
co = random IV
ci=m;®E(k,co+1) m H% m H%
@ a o

e Block cipher is effectively turned into a stream cipher
e No padding problem
e Highly parallelizable

e Random IV prevents reuse of key stream

Other modes

Many other modes that achieve specific goals exist.

e feedback modes: CFB, OFB, ...
e device encryption: LRW, XEX, XTS, ...

e authenticated encryption: OCB, EAX, GCM, ...

In most modern communication systems, we tend to use (if possible)

AEAD = Authenticated Encryption with Associated Data

in order to guarantee confidentiality + integrity of messages and prevent replay attacks

https://en.wikipedia.org/wiki/Galois/Counter_Mode

Overview

Public-key encryption

Asymmetric encryption

In general, a cipher might use different keys for encryption and decryption:

m E c D m
ke kd

(includes symmetric ciphers as the special case k. = ky)

if knowledge about one gives no useful information about the other

then one of them can be made public

Public-key encryption

The encryption key k. is made public (kg kept private)

anyone can write to Bob, but only he can read

As implemented by e.g. PGP /GPG

NB : Public-key encryption is very rarely used, if at all, in modern systems

42

http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/GNU_Privacy_Guard

Modular arithmetic

Recall (?)

Definition

We say that a = b when n divides b — a, i.e. b = a+ kn for some integer k
i.e. a and b are equal, up to ("modulo”) a multiple of n
Remarks:

°a= bif and only if a%n=b%n

e lfa=band c= d, then (a+c) = (b+ d) and (ac) = (bd)

n

Rivest-Shamir-Adleman (1977)

Fix some integer, product of two distinct (large) prime numbers n=p - q

M = C = 7Z/nZ, identified with [0, n[

with d - e 1 where p(n) = (p—1)(q — 1).

~—

@ﬁ)

A small (thus very insecure) working example

n = 74989
phi = 69600
e = 52027
d = 10963

d*e mod phi =1

message: 60211
encryption: 13247
decryption: 60211

Try here

https://sagecell.sagemath.org/?z=eJxdj9EKgzAMRd8L_YcgDJyUoW5uU9jHiM2cD2mLCmPI_n2NOnV7aNKem9wmDTnb9tCWRluSQgoDADc4JhDBiUOWS-EeDbOYGYfsypXoWZbG6UUK7a9JnJ-PzF3bmD4MRqNAgdkvaPTxyOcV4lyHK9Iz0gvaaBECWQ1fL37vZkcpyA8y7XLg5E-NoRmlivdy9hmSQsWIaAaV0mqq-fvsHhB2XVlj4QeCgd7BRkJTtS_XN9YUMFQ_ksaNRNz2AeauX90=&lang=python&interacts=eJyLjgUAARUAuQ==

Remarks on RSA

e Modular exponentiation can be efficiently computed (pow(m,e,n) in Python)
e The public exponent can be chosen be small (often e = 65537)
e Knowing ¢(n), it is easy to deduce d from e (Euclidean algorithm)

e The security of RSA relies on the computational hardness of factoring n

without knowing p and g, the attacker doesn’'t know the value of ¢(n)

e Knowledge of the full pair (d, e) is equivalent to knowing the factors (p, q)

RSA moduli should never be reused

Attacks on RSA (aka factorization algorithms)

There is a very large litterature devoted to the subject of integer factorization.

As of 2024, the best general purpose algorithm is the General Number Field Sieve
(GNFS) that factors an ¢-bit integer in

~ 55070 e

Public factorization record: RSA-250 (2020)

http://en.wikipedia.org/wiki/Integer_factorization
http://en.wikipedia.org/wiki/RSA_numbers#RSA-250

Consequence on key le

140

120

40

ngth

security level

trial division

general number field sieve

key length

1000 2000 3000 4000

According to RSA Security, Inc.

Symmetric key size

Equivalent RSA key size

80
112
128
256

1024
2048
3072
15360

Real-world RSA

The plain RSA described above has all sorts of problems:
e malleability: E(e,my) - E(e, m2) = E(e, my - mo)
e lack of randomness
o fixed size of plaintext

In practice, a suitable padding scheme needs to be used.

— use a library!

http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

Overview

Key agreement

Secret sharing

Public-key encryption provides a partial solution to the problem of setting up a shared
private key for symmetric encryption on an insecure channel:

e Alice chooses secret k,
e encrypts it with Bob’s public encryption key,
e and sends it to him;

e Bob recovers k using his private decryption key.

Are there problems with that? (hint: yes, some)

”Symmetric” version

e Alice chooses kj and sends it to Bob using his public encryption key;
e Bob chooses kg and sends it to Alice using her public encryption key;
e Shared secret is k := ka @ kg.

Better: neither Alice nor Bob fully controls the final secret.

But two public encryption key pairs are needed. . .

Diffie-Hellman (1976)

e Alice and Bob agree on "safe” parameters n and g.
e Alice chooses «, computes a = g“ and sends it to Bob
n

e Bob chooses 3, computes b = g” and sends it to Alice
n

Shared secret is

Diffie-Hellman problem

Eve is faced with the problem:
given a and b, recover k.

We believe that her best line of attack is:

e solve a = g® for o (or b= g® for) discrete logarithm problem
n n

e then easily deduce k = g*? as Alice (or Bob) would.

Example: a = 1769¢
2039

2000
1500

1000

DH caveats

e Should always be used in conjunction with authentication to prevent
man-in-the-middle attacks

DH caveats

e Bob should check that Alice does not provide a value of a for which the discrete
log is easy (same on Alice’s side)

Example: a = 1514¢
1856

1500f,

T R T R T PPy

Attacks on DH (aka DLP algorithms)

There also exists a general-purpose probabilistic algorithm for the DLP that takes (on
average) O(y/v) steps (and O(1) memory)

Also: the General Number Field Sieve solves the modular DLP
— use same key lengths as for RSA

Current world records

http://en.wikipedia.org/wiki/Pollard's_rho_algorithm_for_logarithms
https://en.wikipedia.org/wiki/Discrete_logarithm_records

Recall

140

120

40

security level

trial division

general number field sieve

key length

1000 2000 3000 4000

Generalized DLP

The nice thing about the DLP is that it can be asked for any binary operation *:

Given g and a such that

a=g%=g*xg % *g, find o € N
N———
(0%

So far we used * = modular multiplication, but there are other interesting operations...

Elliptic curves

2 o 2 4

| @(

lgorithms are
i i

Overview

Elliptic curves

Recall: Generalized DLP

Let (G, -) be a finite abelian group.

Given g € G and x such that

find ¢ = dlogg(x, g), with m = ordg(g), the smallest m > 0 for which g” = 1.

Best known DL algorithm: (’)(m%) for a generic group G.

(Much smaller for G = (Z/nZ)*.)

Recall

140

120

40

security level

trial division

general number field sieve

key length

1000 2000 3000 4000

Elliptic curves

Definition

An elliptic curve is a plane curve defined by an equation of the form

E: y?’=x3+ax+b.

Example
a= 1—10, b=1 ‘

Some famous elliptic curves

Secp256k1 (Bitcoin, Ethereum)

V=347

Curve25519 (Monero, Zcash, ...)

y? = x3 + 486662x> + x

Addition on an elliptic curve

Given P, Q € &, the line through P and Q intersects £ at a third point, say R = (x, y).
Definition

P+Q::(X7_y)

Fun fact: This makes £ U {O} into an abelian group!

(The point at infinity O = (0, 00) being the neutral element)

Addition on an elliptic curve

F————t————3g

P+Q

DLP on an elliptic curve

Given G € & of (additive) order m and P € £ such that

P=¢(G=G+---+G in &,
¢

find ¢ = dlogg (P, G).
m

(Easy to solve over the real or complex numbers)

Elliptic curves over finite fields

Instead: consider solutions modulo a fixed
prime p % = x3 — x

yv’=x3+ax+b

P Tl

~» E(IFp) elliptic curve over the field with ol
p elements 2]

(a finite abelian group!)

Basic computations are easy...

1 p = 32806352226718822643429

2 a = 5740347588375554626864

3 b = 20798093206103976495852

4

5 E = EllipticCurve(GF(p),[a,b])

4]

7 P = E([29155336995917130553754, 8373057744944244479010])

8 Q = E([3415221595160200314960, 11073266156995522792160])

9

10 24P + 3%Q

Evaluate Language: Sage v
Share

(9956939019642126506349 : 26680698275736540367982 : 1)

Help | Powered by SageMath

...but the DLP is hard!

https://sagecell.sagemath.org/?z=eJwljrtuAlEMRPuV9h9uuZAt_Bjb10WqCGihRhSAUiBRrFCS749XVNZoznhmaZ9NpZOriYgH914HCslxuJZpAVKE9a5hZnDx7hiHW3lCkZ1ShZxJMxxp3WQcxmFX9u75fCw_j_vX7-vvezrsp2Uzn6_z7bJZieNKTGdJNlP1TEsOVioVhrlVX4kIIAEBEElMa_b0Tiq4NrOlsZMQKSOd5sZMoeLOtj4tJFKKeLfK9tg-mm5P_7fJM8Q=&lang=sage&interacts=eJyLjgUAARUAuQ==

Size of £

Theorem (Hasse bound)

#E(Fp) = 1+ p+O(V/p)

hence #&(Fp) =~ p.

We use elliptic curves with points G of large order m = p.

ECDH

Alice and Bob agree on "safe” parameters £ and G.
Alice chooses a, computes A = aG in €.
Bob choooses b, computes B = bG in £.

Shared secret is

K := (ab)G = aB = bA.

Parameter generation

To get £ bits of security:

e choose a 2/-bit prime p
e an elliptic curve & over I,

e and a point G on & of (almost) prime order m that generates (most of) £(Fp).

Much harder to manufacture than e.g. for RSA — but can be reused.

Overview

Digital signatures

To achieve message authentication

e An authenticated encryption mode can be used (e.g. GCM)

e Or a dedicated primitive like HMAC (that doesn’t provide confidentiality)

but these do not provide sender authentication (why ?)

= message forgery is possible (by Bob)

= message repudiation is possible (by Alice)

Digital signatures

A digital signature scheme consists of a pair of algorithms:

e signature S(kpiy, m)

e verification V/(kyyp, m,s) € {0,1}

(along with a key generation algorithm that produces pairs (Kpriv, Kpub))

Requirements of a signature algorithm

e Correct verification:

Verify (kpub, m, Sign(Kpriv, m)) = true for all m

e Non-forgery

impossible in practice to manufacture a valid signature for a (new) message m
without access to kpriv

In particular: not possible to recover kyi, from k.

e Consequence: non-repudiation

If Alice keeps kpriy private and a valid signature for ky,p, is encountered, it means
she did sign (a signature is binding)

Desirable properties of a signature algorithm

e Efficiency:

the Sign and Verify algorithms should be reasonably fast

e Signature conciseness:

the produced signatures s should be reasonably small

e Key conciseness:

the private and public keys kpriy and kyup, should not be too large

o Efficient key generation:
should be easy to come up with new pairs (Kpriv, Kpub)

e.g. reusable parameters

Hasn-then-sign paradigm

To sign a message m with private key ke:

e Alice computes h = H(m);

e appends s = E(ke, h) to m.
Upon reception of a pair (m,s):

e Bob checks with associated public key whether

?

D(k4,s) = H(m).

Timeline of signature algorithms

e 30's - 90's: RSA-PSS, DSA (integer-based)
e 00's - 20's: ECDSA, EdDSA, Ed25519 (elliptic curve-based)

e 30's - ?7's: quantum-resistant signatures (lattice or hash-based)
As of 2024, there is an ongoing standardization process led by NIST to specify:

e ML-DSA (previously known as CRYSTALS-Dilithium)

e SLH-DSA (previously known as SPHINCS+)

as well and alternative lattice-based signature scheme (previously known as FALCON)

and a key establishment primitive ML-KEM (previously known as CRYSTALS-Kyber)

https://csrc.nist.gov/News/2023/three-draft-fips-for-post-quantum-cryptography

References

e These slides and Jupyter notebook: https://junia.ovh/gch
e JP Aumasson, Serious Cryptography, Starch Press (2017)

e D. Boneh, Cryptography 1, Coursera

https://junia.ovh/gch

	Introduction
	Secret-key encryption
	Public-key encryption
	Key agreement
	Elliptic curves
	Digital signatures

