
A primer of modern cryptography

KNUST University

Gabriel Chênevert

February 5, 2024

mailto:gabriel.chenevert@junia.com

Overview

Introduction

Secret-key encryption

Public-key encryption

Key agreement

Elliptic curves

Digital signatures

1

whoami

Gabriel Chênevert

JUNIA, Lille (France)

Head of the Computer Science &

Mathematics department

Interested in information theory:

� signal processing

� error correction

� quantum computing

� cryptography

Class material available at

https://junia.ovh/gch

2

https://junia.ovh/gch

What is cryptography

Cryptography provides a collection of primitives tand protocols that allow the

manipulation of (digital) information securely even in the presence of adversaries.

A brief timeline of cryptography (source):

3

https://ieeexplore.ieee.org/document/9663283

Goal of today: make sense of this

4

Shannon’s communication model

Claude Shannon, A mathematical theory of communication (1948)

5

https://culturemath.ens.fr/sites/default/files/p3-shannon.pdf

Encoding

In order to be sent through the communication channel, messages need to be encoded

in a suitable way (and decoded on the other side).

Encodings may achieve different desirable properties:

� existence

� compression

� integrity resistance

� confidentiality

� authentication

� non-repudiation

6

Overview

Introduction

Secret-key encryption

Public-key encryption

Key agreement

Elliptic curves

Digital signatures

7

The secure channel problem

Alice wants to send a message to Bob, but doesn’t want Eve to be able to read it

8

Secret-key cryptography

A symmetric cipher (or cryptosystem) consists of a pair of functions

m E c

k

D m

k

where

� m: original message (plaintext)

� c : encrypted message (ciphertext)

� k: secret shared key

9

Illustration

10

Security level

Definition

The security level of a cryptosystem is (roughly) the log2 of the time complexity of

the best known attack against it.

� Can change abruptly if new attack is discovered!

� No greater than key length (brute-force attack)

� Can be smaller. . .

11

Aside: orders of magnitude

� 25: number of persons in this room

� 217: number of students at KNUST

� 221: number of persons in Kumasi

� 225: number of persons in Ghana

� 233: total world population

� 234: number of views of the most popular video on YouTube

12

https://www.youtube.com/watch?v=XqZsoesa55w

Computing resources

� 270: estimated number of operations / second performed by general-purpose

computers

� 273: total digital memory available worldwide (in bits)

cf. Hilbert & Lopez (2011)

� 267: number of SHA256 hashes computed per second by the Bitcoin network

Current consensus: 128-bit should be un-brute-forceable for the next 30 years

13

http://bblfish.net/tmp/2012/06/18/Science-2011-Hilbert-60-5.pdf
https://www.blockchain.com/charts/hash-rate

Security levels

14

Requirements of a symmetric cryptosystem

� Correct decryption : for all k ∈ K and m ∈ M,

D(k ,E (k ,m)) = m.

� Confidentiality : knowledge of the ciphertext should not help an attacker guess

or understand what the message is

(can be formalized)

i.e. there exists no efficient ciphertext-only attacks

15

Removeable masks

Definition (binary stream cipher)

Any cryptosystem with M = C = {0, 1}n, K = {0, 1}ℓ andE (k ,m) = m ⊕ pad(k)

D(k , c) = c ⊕ pad(k)

where pad : {0, 1}ℓ → {0, 1}n generates a keystream from the key k

in which ⊕ is the bitwise XOR operator

16

Example (n = 8)

Alice:

m = 1110 0011 = e3

pad = 0110 1101 = 6d

c = m ⊕ pad = 1000 1110 = 8e

Bob:

c = 1000 1110 = 8e

pad = 0110 1101 = 6d

m = c ⊕ pad = 1110 0011 = e3

17

Example (n = 128)

18

Security requirements (1/2)

Theorem

Stream ciphers decrypt correctly.

Proof.

D(k,E (k,m)) = (m ⊕ pad(k))⊕ pad(k)

= m ⊕ (pad(k)⊕ pad(k))

= m ⊕ 0

= m.

19

Security requirements (2/2)

Theorem (Shannon, 1949)

In the special case ℓ = n, pad(k) = k, a stream cipher provides perfect secrecy (in the

information-theoretic sense).

This special case called one-time pad or Vernam cipher.

But. . . the key need to be as long as the message!

20

http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

In practice: stream ciphers

We want to keep K = {0, 1}ℓ small and work with M = C = {0, 1}∗ arbitrarily large:

use for keystream function

pad : {0, 1}ℓ −→ {0, 1}∗

a cryptographically secure pseudo-random number generator (CSPRNG)

with the secret key as seed

21

Pseudo-random number generators

22

Security requirement for CSPRNGs

To be used as a keystream generator, a PRNG needs to be unpredictable : an attacker

cannot efficiently guess future outputs from previous ones

� All PRNGs are eventually periodic

(deterministic stateful functions with a finite number of internal states)

=⇒ in particular, need to have long (> 2128) period

� Beware: most ”standard” PRNGs are easily predictable!

=⇒ related-key attacks on the underlying OTP

Example: Kaspersky’s guessable passwords fiasco (2021)

23

https://blog.ledger.com/kaspersky-password-manager

Current recommendations

The eSTREAM project (ECRYPT 2008) proposes

� HC-128, Rabbit, Salsa/Chacha20, SOSEMANUK (software-oriented)

� Grain, MICKEY, Trivium (hardware-oriented)

(all force the PRNG to use a nonce as initial value)

Still need to be careful to seed the CSPRNG with enough entropy: using PID or

timestamps is not a good idea!

=⇒ better to use dedicated entropy sources e.g. /dev/urandom, random.org, . . .

24

http://en.wikipedia.org/wiki/Salsa20
https://random.org

The problem with stream ciphers

Mask reuse is a problem: if c1 = m1 ⊕ pad

c2 = m2 ⊕ pad

then

c1 ⊕ c2 = m1 ⊕m2.

This means that:

1. Alice shouldn’t use the same pad twice (ok using nonces)

2. it can be possible to manipulate the message through the encryption!

E (k,m ⊕∆) = E (k ,m)⊕∆ (malleability)
25

Different attackers

Eve (a passive attacker): sees the ciphertext, learns nothing ✓

Oscar (an active attacker): is able to modify the ciphertext, may have a different goal !

26

A different approach: block ciphers

Consider (E ,D) a symmetric cipher with M = C.

For given k ∈ K,

Ek := E (k , ·) : M −→ M

admits Dk := D(k, ·) as inverse

hence Ek is a permutation of M (bijection from M to M)

27

Ek as a permutation

e.g. with |M| = 28 :

M

00000000

00000001

00000010

00000011
...

11111101

11111110

11111111

Ek

−−−−−−−−−−−−−−→

M

11100110

01000101

01001011

11111110
...

11101110

00010100

11011110

28

Idea

Ek should be thought of as a pseudo-random permutation of M.

In practice: undistinguishable from a random function M → M.

Allows one to:

� reuse keys (with some care!)

� work with small messages (blocks)

Note: typically |K| ≪ |permutations of M| = |M|! ≈ |M||M|

ex.: |K| = |M| = 2128, |SM| ≈ |M||M| ≈ 243556142965880123323311949751266331066368 (!)

29

Do these things actually exist?

Shannon’s paradigm: confusion and diffusion (stream ciphers miss the diffusion part)

Essentially all modern examples use an iterative design where the plaintext is encrypted

a certain number of times by a round function performing (a small amount of)

confusion and diffusion 
x0 = m,

xi+1 = R(ki+1, xi), 0 ≤ i < r

E (k,m) = xr

preceded by a key scheduling process k 7→ (k1, · · · , kr).

30

Famous examples

n-bit block, ℓ-bit key, r rounds

� Lucifer (IBM, 1971) n = ℓ = 128, r = 16

� Data Encryption Standard (NIST, 1977) n = 64, ℓ = 56, r = 16

Successful brute force attack in 1997

Still survived in the form of Triple DES in legacy hardware/software

� Rijndael (KU Leuven, 1998) aka Advanced Encryption Standard (NIST, 2000)

n = 128, ℓ ∈ {128, 192, 256}, r ∈ {10, 12, 14}.

But also: RC5/RC6, IDEA, Serpent, Blowfish/Twofish, . . .

31

Design of DES

y0 z0

⊕ F

k1

y1 z1

⊕ F

k2

y2 z2

yr−1 zr−1

⊕ F

kr

yr zr

16-round Feistel network :

Write each xi = yi || zi left and right parts

Round function:

yi+1 = zi

zi+1 = yi ⊕ F (ki+1, zi)

Easy to implement in hardware
(and invert – exercice!)

32

https://en.wikipedia.org/wiki/Data_Encryption_Standard#The_Feistel_(F)_function

Security proof

Theorem (Luby-Rackhoff, 1988)

Three rounds of a Feistel network with inner function F a CSPRNG using k as a seed

is computationally undistinguishable from a random permutation.

In practice: increase the number of rounds to take into account the fact that F might

not be a provably good CSPRNG.

Still: the original DES can now be broken by exhaustive key search in a couple of hours

with COPACOBANA

33

http://www.copacobana.org

Today

In practice: use AES or some other NIST finalist

34

Modes of operation

Now suppose the message to be encrypted is longer than a single block:

m = m1 ||m2 ||m3 || · · ·

How to use a block cipher (e.g. AES) to encrypt m ?

� Electronic Code Book (ECB) mode: ci = E (k ,mi)

mi = D(k, ci)

35

ECB mode?

Problem: equal blocks yield equal ciphertexts

Should use (pseudo-)probabilistic encryption:

a given block shouldn’t always have the same encryption

; use of either random value or nonce (counter)

Side effect: need to have |C| > |M| to make room for redundancy in the ciphertexts

36

Cipher Block Chaining (CBC) mode

c0 = random Initial Value

ci = E (k ,mi ⊕ ci−1)

c0

E

m1

k

c1

E

m2

k

c2

· · · · · · E

mt

k

ct

� Encryption is sequential (but decryption can be parallelized)

mi = D(k , ci)⊕ ci−1

� Message has to be padded to a multiple of the block length

� Crucial that random IV is non-predictable (chosen plaintext attack)

37

Randomized counter (CTR) mode

c0 = random IV

ci = mi ⊕ E (k , c0 + i)

c0

E

c0 + 1

c1

k

m1

E

c0 + 2

c2

k

m2

· · · · · · E

c0 + t

ct

k

mt

� Block cipher is effectively turned into a stream cipher

� No padding problem

� Highly parallelizable

� Random IV prevents reuse of key stream

38

Other modes

Many other modes that achieve specific goals exist.

� feedback modes: CFB, OFB, . . .

� device encryption: LRW, XEX, XTS, . . .

� authenticated encryption: OCB, EAX, GCM, . . .

In most modern communication systems, we tend to use (if possible)

AEAD = Authenticated Encryption with Associated Data

in order to guarantee confidentiality + integrity of messages and prevent replay attacks

39

https://en.wikipedia.org/wiki/Galois/Counter_Mode

Overview

Introduction

Secret-key encryption

Public-key encryption

Key agreement

Elliptic curves

Digital signatures

40

Asymmetric encryption

In general, a cipher might use different keys for encryption and decryption:

m E

ke

c D

kd

m

(includes symmetric ciphers as the special case ke = kd)

if knowledge about one gives no useful information about the other

then one of them can be made public

41

Public-key encryption

The encryption key ke is made public (kd kept private)

anyone can write to Bob, but only he can read

As implemented by e.g. PGP/GPG

NB : Public-key encryption is very rarely used, if at all, in modern systems

42

http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/GNU_Privacy_Guard

Modular arithmetic

Recall (?)

Definition

We say that a ≡
n
b when n divides b − a, i.e. b = a+ kn for some integer k

i.e. a and b are equal, up to (”modulo”) a multiple of n

Remarks:

� a ≡
n
b if and only if a% n = b% n

� If a ≡
n
b and c ≡

n
d , then (a+ c) ≡

n
(b + d) and (ac) ≡

n
(bd)

43

Rivest-Shamir-Adleman (1977)

Fix some integer, product of two distinct (large) prime numbers n = p · q

M = C = Z/nZ, identified with [[0, n[[

E (e,m) :≡
n
me

D(d , c) :≡
n
cd

with d · e ≡
φ(n)

1 where φ(n) = (p − 1)(q − 1).

44

A small (thus very insecure) working example

Try here

45

https://sagecell.sagemath.org/?z=eJxdj9EKgzAMRd8L_YcgDJyUoW5uU9jHiM2cD2mLCmPI_n2NOnV7aNKem9wmDTnb9tCWRluSQgoDADc4JhDBiUOWS-EeDbOYGYfsypXoWZbG6UUK7a9JnJ-PzF3bmD4MRqNAgdkvaPTxyOcV4lyHK9Iz0gvaaBECWQ1fL37vZkcpyA8y7XLg5E-NoRmlivdy9hmSQsWIaAaV0mqq-fvsHhB2XVlj4QeCgd7BRkJTtS_XN9YUMFQ_ksaNRNz2AeauX90=&lang=python&interacts=eJyLjgUAARUAuQ==

Remarks on RSA

� Modular exponentiation can be efficiently computed (pow(m,e,n) in Python)

� The public exponent can be chosen be small (often e = 65537)

� Knowing φ(n), it is easy to deduce d from e (Euclidean algorithm)

� The security of RSA relies on the computational hardness of factoring n

without knowing p and q, the attacker doesn’t know the value of φ(n)

� Knowledge of the full pair (d , e) is equivalent to knowing the factors (p, q)

RSA moduli should never be reused

46

Attacks on RSA (aka factorization algorithms)

There is a very large litterature devoted to the subject of integer factorization.

As of 2024, the best general purpose algorithm is the General Number Field Sieve

(GNFS) that factors an ℓ-bit integer in

≈ 5.5 ℓ1/3(ln ℓ)2/3 time.

Public factorization record: RSA-250 (2020)

47

http://en.wikipedia.org/wiki/Integer_factorization
http://en.wikipedia.org/wiki/RSA_numbers#RSA-250

Consequence on key length

48

According to RSA Security, Inc.

Symmetric key size Equivalent RSA key size

80 1024

112 2048

128 3072

256 15360

49

Real-world RSA

The plain RSA described above has all sorts of problems:

� malleability: E (e,m1) · E (e,m2) = E (e,m1 ·m2)

� lack of randomness

� fixed size of plaintext

� . . .

In practice, a suitable padding scheme needs to be used.

=⇒ use a library!

50

http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

Overview

Introduction

Secret-key encryption

Public-key encryption

Key agreement

Elliptic curves

Digital signatures

51

Secret sharing

Public-key encryption provides a partial solution to the problem of setting up a shared

private key for symmetric encryption on an insecure channel:

� Alice chooses secret k,

� encrypts it with Bob’s public encryption key,

� and sends it to him;

� Bob recovers k using his private decryption key.

Are there problems with that? (hint: yes, some)

52

”Symmetric” version

� Alice chooses kA and sends it to Bob using his public encryption key;

� Bob chooses kB and sends it to Alice using her public encryption key;

� Shared secret is k := kA ⊕ kB .

Better: neither Alice nor Bob fully controls the final secret.

But two public encryption key pairs are needed. . .

53

Diffie-Hellman (1976)

� Alice and Bob agree on ”safe” parameters n and g .

� Alice chooses α, computes a ≡
n
gα and sends it to Bob.

� Bob chooses β, computes b ≡
n
gβ and sends it to Alice.

Shared secret is

k :≡
n
gαβ ≡ aβ ≡ bα.

54

Diffie-Hellman problem

Eve is faced with the problem:

given a and b, recover k.

We believe that her best line of attack is:

� solve a ≡
n
gα for α (or b ≡

n
gβ for β) discrete logarithm problem

� then easily deduce k ≡
n
gαβ as Alice (or Bob) would.

55

Example: a ≡
2039

1769α

56

DH caveats

� Should always be used in conjunction with authentication to prevent

man-in-the-middle attacks

57

DH caveats

� Bob should check that Alice does not provide a value of a for which the discrete

log is easy (same on Alice’s side)

Example: a ≡
1856

1514α

58

Attacks on DH (aka DLP algorithms)

There also exists a general-purpose probabilistic algorithm for the DLP that takes (on

average) O(
√
ν) steps (and O(1) memory)

Also: the General Number Field Sieve solves the modular DLP

=⇒ use same key lengths as for RSA

Current world records

59

http://en.wikipedia.org/wiki/Pollard's_rho_algorithm_for_logarithms
https://en.wikipedia.org/wiki/Discrete_logarithm_records

Recall

60

Generalized DLP

The nice thing about the DLP is that it can be asked for any binary operation ⋆:

Given g and a such that

a = gα = g ⋆ g ⋆ · · · ⋆ g︸ ︷︷ ︸
α

, find α ∈ N

So far we used ⋆ = modular multiplication, but there are other interesting operations...

61

Elliptic curves

Best known DLP algorithms are the generic ones

=⇒ ℓ-bit security achieved by 2ℓ-bit keys ,

62

Overview

Introduction

Secret-key encryption

Public-key encryption

Key agreement

Elliptic curves

Digital signatures

63

Recall: Generalized DLP

Let (G, ·) be a finite abelian group.

Given g ∈ G and x such that

x = g ℓ = g · g · · · g︸ ︷︷ ︸
ℓ

in G,

find ℓ ≡
m
dlogG(x , g), with m = ordG(g), the smallest m > 0 for which gm = 1.

Best known DL algorithm: O(m
1
2) for a generic group G.

(Much smaller for G = (Z/nZ)×.)

64

Recall

65

Elliptic curves

Definition

An elliptic curve is a plane curve defined by an equation of the form

E : y2 = x3 + ax + b.

Example

a = 1
10 , b = 1

66

Some famous elliptic curves

Secp256k1 (Bitcoin, Ethereum)

y2 = x3 + 7

Curve25519 (Monero, Zcash, . . .)

y2 = x3 + 486662x2 + x

67

Addition on an elliptic curve

Given P,Q ∈ E , the line through P and Q intersects E at a third point, say R = (x , y).

Definition

P + Q := (x ,−y)

Fun fact: This makes E ∪ {O} into an abelian group!

(The point at infinity O = (0,∞) being the neutral element)

68

Addition on an elliptic curve

69

DLP on an elliptic curve

Given G ∈ E of (additive) order m and P ∈ E such that

P = ℓG = G + · · ·+ G︸ ︷︷ ︸
ℓ

in E ,

find ℓ ≡
m
dlogE(P,G).

(Easy to solve over the real or complex numbers)

70

Elliptic curves over finite fields

Instead: consider solutions modulo a fixed

prime p

y2 ≡
p
x3 + ax + b

; E(Fp) elliptic curve over the field with

p elements

(a finite abelian group!)

y2 ≡
17

x3 − x

71

Basic computations are easy...

...but the DLP is hard!

72

https://sagecell.sagemath.org/?z=eJwljrtuAlEMRPuV9h9uuZAt_Bjb10WqCGihRhSAUiBRrFCS749XVNZoznhmaZ9NpZOriYgH914HCslxuJZpAVKE9a5hZnDx7hiHW3lCkZ1ShZxJMxxp3WQcxmFX9u75fCw_j_vX7-vvezrsp2Uzn6_z7bJZieNKTGdJNlP1TEsOVioVhrlVX4kIIAEBEElMa_b0Tiq4NrOlsZMQKSOd5sZMoeLOtj4tJFKKeLfK9tg-mm5P_7fJM8Q=&lang=sage&interacts=eJyLjgUAARUAuQ==

Size of E

Theorem (Hasse bound)

#E(Fp) = 1 + p +O(
√
p)

hence #E(Fp) ≈ p.

We use elliptic curves with points G of large order m ≈ p.

73

ECDH

� Alice and Bob agree on ”safe” parameters E and G .

� Alice chooses a, computes A = aG in E .

� Bob choooses b, computes B = bG in E .

� Shared secret is

K := (ab)G = aB = bA.

74

Parameter generation

To get ℓ bits of security:

� choose a 2ℓ-bit prime p

� an elliptic curve E over Fp

� and a point G on E of (almost) prime order m that generates (most of) E(Fp).

Much harder to manufacture than e.g. for RSA – but can be reused.

75

Overview

Introduction

Secret-key encryption

Public-key encryption

Key agreement

Elliptic curves

Digital signatures

76

To achieve message authentication

� An authenticated encryption mode can be used (e.g. GCM)

� Or a dedicated primitive like HMAC (that doesn’t provide confidentiality)

but these do not provide sender authentication (why ?)

=⇒ message forgery is possible (by Bob)

=⇒ message repudiation is possible (by Alice)

77

Digital signatures

A digital signature scheme consists of a pair of algorithms:

� signature S(kpriv,m)

� verification V (kpub,m, s) ∈ {0, 1}

(along with a key generation algorithm that produces pairs (kpriv, kpub))

78

Requirements of a signature algorithm

� Correct verification:

Verify(kpub,m, Sign(kpriv,m)) = true for all m

� Non-forgery

impossible in practice to manufacture a valid signature for a (new) message m

without access to kpriv

In particular: not possible to recover kpriv from kpub.

� Consequence: non-repudiation

If Alice keeps kpriv private and a valid signature for kpub is encountered, it means

she did sign (a signature is binding)

79

Desirable properties of a signature algorithm

� Efficiency:

the Sign and Verify algorithms should be reasonably fast

� Signature conciseness:

the produced signatures s should be reasonably small

� Key conciseness:

the private and public keys kpriv and kpub should not be too large

� Efficient key generation:

should be easy to come up with new pairs (kpriv, kpub)

e.g. reusable parameters

80

Hasn-then-sign paradigm

To sign a message m with private key ke :

� Alice computes h = H(m);

� appends s = E (ke , h) to m.

Upon reception of a pair (m, s):

� Bob checks with associated public key whether

D(kd , s)
?
= H(m).

81

Timeline of signature algorithms

� 80’s - 90’s: RSA-PSS, DSA (integer-based)

� 00’s - 20’s: ECDSA, EdDSA, Ed25519 (elliptic curve-based)

� 30’s - ??’s: quantum-resistant signatures (lattice or hash-based)

As of 2024, there is an ongoing standardization process led by NIST to specify:

� ML-DSA (previously known as CRYSTALS-Dilithium)

� SLH-DSA (previously known as SPHINCS+)

as well and alternative lattice-based signature scheme (previously known as FALCON)

and a key establishment primitive ML-KEM (previously known as CRYSTALS-Kyber)

82

https://csrc.nist.gov/News/2023/three-draft-fips-for-post-quantum-cryptography

References

� These slides and Jupyter notebook: https://junia.ovh/gch

� JP Aumasson, Serious Cryptography, Starch Press (2017)

� D. Boneh, Cryptography 1, Coursera

83

https://junia.ovh/gch

	Introduction
	Secret-key encryption
	Public-key encryption
	Key agreement
	Elliptic curves
	Digital signatures

