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What is cryptography

Cryptography provides a collection of primitives tand protocols that allow the
manipulation of (digital) information securely even in the presence of adversaries.

A brief timeline of cryptography (source):
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https://ieeexplore.ieee.org/document/9663283

Goal of today: make sense of this
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Shannon’s communication model
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Fig. 1—Schematic diagram of a general communication system.

Claude Shannon, A mathematical theory of communication (1948)


https://culturemath.ens.fr/sites/default/files/p3-shannon.pdf

Encoding

In order to be sent through the communication channel, messages need to be encoded
in a suitable way (and decoded on the other side).

Encodings may achieve different desirable properties:

existence

e compression

e integrity resistance
e confidentiality

e authentication

e non-repudiation



Overview

Secret-key encryption



The secure channel problem

Alice wants to send a message to Bob, but doesn’t want Eve to be able to read it
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Secret-key cryptography

A symmetric cipher (or cryptosystem) consists of a pair of functions

m E c D —m
k k

where

e m: original message (plaintext)
e c: encrypted message (ciphertext)

e k: secret shared key
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Security level

Definition

The security level of a cryptosystem is (roughly) the log, of the time complexity of
the best known attack against it.

e Can change abruptly if new attack is discovered!
e No greater than key length (brute-force attack)

e Can be smaller. ..



Aside: orders of magnitude

e 25 number of persons in this room
e 27 number of students at KNUST
: number of persons in Kumasi

. number of persons in Ghana

. total world population

: number of views of the most popular video on YouTube


https://www.youtube.com/watch?v=XqZsoesa55w

Computing resources

e 270: estimated number of operations / second performed by general-purpose
computers

e 273: total digital memory available worldwide (in bits)

cf. Hilbert & Lopez (2011)

e 2°7: number of SHA256 hashes computed per second by the Bitcoin network

Current consensus: 128-bit should be un-brute-forceable for the next 30 years


http://bblfish.net/tmp/2012/06/18/Science-2011-Hilbert-60-5.pdf
https://www.blockchain.com/charts/hash-rate

Security levels




Requirements of a symmetric cryptosystem

e Correct decryption : for all k € K and m € M,

D(k, E(k,m)) = m.

¢ Confidentiality : knowledge of the ciphertext should not help an attacker guess
or understand what the message is

(can be formalized)

i.e. there exists no efficient ciphertext-only attacks



Removeable masks

Definition (binary stream cipher)

Any cryptosystem with M = C = {0,1}", K = {0,1}* and

E(k, m) = m @ pad(k)
D(k,c) = ¢ @ pad(k)

where pad : {0,1}* — {0,1}" generates a keystream from the key k

in which @ is the bitwise XOR operator



Example (n = 8)

Alice:
m=11100011 = e3

pad = 01101101 = 6d
c=m® pad = 10001110 = 8e

Bob:
¢ =10001110 = 8e

pad = 01101101 = 6d
m=c®pad =11100011 = e3



Example (n = 128)

from os import urandom
def xor(a,b):
return bytes([x*y for x,y in zip(a,b)])

p = urandom(16)
# Alice
m = b"Mask on 128 bits"

c = xor(m,p)

print(" m = ", m.hex())
print("pad = ", p.hex())
print(" ¢ =", c.hex())
m 4d61736b20676e203132382062697473

pad = f31led60c2c59c9eedbad55cd71822d4a
¢ = be7fa5670¢c36a7ce7a9abded13eb5939

# Bob

mm = xor(c,p)

print(" ¢ =", c.hex())
print("pad = ", p.hex())
print(" m =", mm.hex())

¢ = be7fa5670c36a7ce7a9abded13eb5939
pad = f31led60c2c59c9eedba855cd71822d4a
m = 4d61736b206T6e203132382062697473



Security requirements (1/2)

Theorem

Stream ciphers decrypt correctly.

Proof.

D(k, E(k, m)) = (m @ pad(k)) & pad(k)
= m @ (pad(k) @& pad(k))
=m0

=m.



Security requirements (2/2)

Theorem (Shannon, 1949)

In the special case { = n, pad(k) = k, a stream cipher provides perfect secrecy (in the
information-theoretic sense).

This special case called one-time pad or Vernam cipher.

But. .. the key need to be as long as the message!


http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

In practice: stream ciphers

We want to keep K = {0,1}* small and work with M = C = {0, 1}* arbitrarily large:

use for keystream function
pad : {0,1}* — {0,1}*

a cryptographically secure pseudo-random number generator (CSPRNG)

with the secret key as seed



Pseudo-random number generators

In [1]: import random
# uses *insecure* but efficient Mersenne Twister PRNG
random. seed (12345)
for i in range(16):
print(hex(random.randint(®,2**128))[2:-1])

6facaa5090e5e945452ec40a3193cas
6ed4e94bdfc9e3bl1fcff4545f811ch
bc428d42fa88269287f26aeel75f0cd
25ece8452aa4857e8101e89a95¢5b9
d64a3ce030alfed513ed748bb80e3ba
56eaa3017576714a06057c82527122d
94820a06¢555663f29ef41dodeeadss
6aleccdaa70celb51978cec0495cfad
df8960adleab5cd83b788b660adde3e
96af@dead1fad2962f927291ab721ab
213f191ff56ae7eaea80db0684abs561
f702e8c026784184026530cdd50b612
282fe557578h24268a0417415987baf
9f3180427b1427081f1laflfac2eldac
265015788e7ae9afle8fch74b2d4f32
f79fcaabed7b342b2a3a46677eb14f8



Security requirement for CSPRNGs

To be used as a keystream generator, a PRNG needs to be unpredictable : an attacker
cannot efficiently guess future outputs from previous ones

e All PRNGs are eventually periodic
(deterministic stateful functions with a finite number of internal states)

= in particular, need to have long (> 2!?8) period

e Beware: most "standard” PRNGs are easily predictable!

— related-key attacks on the underlying OTP

Example: Kaspersky's guessable passwords fiasco (2021)
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https://blog.ledger.com/kaspersky-password-manager

Current recommendations

The eSTREAM project (ECRYPT 2008) proposes

e HC-128, Rabbit, Salsa/Chacha20, SOSEMANUK (software-oriented)
e Grain, MICKEY, Trivium (hardware-oriented)
(all force the PRNG to use a nonce as initial value)

Still need to be careful to seed the CSPRNG with enough entropy: using PID or
timestamps is not a good idea!

= better to use dedicated entropy sources e.g. /dev/urandom, random.org, ...


http://en.wikipedia.org/wiki/Salsa20
https://random.org

The problem with stream ciphers

Mask reuse is a problem: if
c1 = my @ pad
¢ = myp @ pad
then

1D =m®ms.

This means that:

1. Alice shouldn't use the same pad twice (ok using nonces)

2. it can be possible to manipulate the message through the encryption!

E(k,m® A)=E(k,m)& A (malleability)



Different attackers
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Eve (a passive attacker): sees the ciphertext, learns nothing v/

Oscar (an active attacker): is able to modify the ciphertext, may have a different goal !



A different approach: block ciphers

Consider (E, D) a symmetric cipher with M = C.

For given k € I,
Ex:=E(k,-): M —M

admits Dy := D(k, -) as inverse

hence Ej is a permutation of M (bijection from M to M)



E, as a permutation

e.g. with M| =28

M

00000000
00000001
00000010
00000011

11111101
11111110
11111111

Ej

M

11100110
01000101
01001011
11111110

11101110
00010100
11011110



Idea

Ey should be thought of as a pseudo-random permutation of M.

In practice: undistinguishable from a random function M — M.

Allows one to:
e reuse keys (with some care!)

e work with small messages (blocks)

Note: typically |K| < |permutations of M| = |[M|l ~ |[M|M|

ex.: |’C| — |M‘ — 2128' |SM‘ ~ ’M||M| ~ 243556142965880123323311949751266331066368 (|)



Do these things actually exist?

Shannon'’s paradigm: confusion and diffusion (stream ciphers miss the diffusion part)

Essentially all modern examples use an iterative design where the plaintext is encrypted
a certain number of times by a round function performing (a small amount of)
confusion and diffusion

Xo — m,
Xiy1 = R(kiy1,xi), 0<i<r
E(k,m) = x,

preceded by a key scheduling process k — (ki,--- , k).



Famous examples

n-bit block, /-bit key, r rounds
e Lucifer (IBM, 1971) n=1¢ =128, r = 16
e Data Encryption Standard (NIST, 1977) n =64, { =56, r = 16

Successful brute force attack in 1997

Still survived in the form of Triple DES in legacy hardware/software
¢ Rijndael (KU Leuven, 1998) aka Advanced Encryption Standard (NIST, 2000)
n =128, ¢ € {128,192,256}, r € {10,12,14}.

But also: RC5/RC6, IDEA, Serpent, Blowfish/Twofish, ...



Design of DES

16-round Feistel network :
Write each x; = y; | z; left and right parts

Round function:

Yi+1 = Zi

zip1 =y ® F(kiv1,2i)

Easy to implement in hardware
(and invert — exercice!)


https://en.wikipedia.org/wiki/Data_Encryption_Standard#The_Feistel_(F)_function

Security proof

Theorem (Luby-Rackhoff, 1988)

Three rounds of a Feistel network with inner function F a CSPRNG using k as a seed
is computationally undistinguishable from a random permutation.

In practice: increase the number of rounds to take into account the fact that F might
not be a provably good CSPRNG.

Still: the original DES can now be broken by exhaustive key search in a couple of hours
with COPACOBANA


http://www.copacobana.org

Today

In practice: use AES or some other NIST finalist

TrueCrypt - Encryption Algorithm Benchmark

100MB Vv




Modes of operation

Now suppose the message to be encrypted is longer than a single block:

m=my|my|ms| -
How to use a block cipher (e.g. AES) to encrypt m ?

¢ Electronic Code Book (ECB) mode:



ECB mode?

Problem: equal blocks yield equal ciphertexts

Should use (pseudo-)probabilistic encryption:

a given block shouldn't always have the same encryption
~> use of either random value or nonce (counter)

Side effect: need to have |C| > |M]| to make room for redundancy in the ciphertexts



Cipher Block Chaining (CBC) mode

my mo

co = random Initial Value
¢i=E(k,m; ®ci—1) k— E k— E
()] C1 Co

e Encryption is sequential (but decryption can be parallelized)
m; = D(k,c;) © ¢i1

e Message has to be padded to a multiple of the block length

e Crucial that random IV is non-predictable (chosen plaintext attack)




Randomized counter (CTR) mode

co+1 c+2
k— E k— E
co = random IV
ci=m;®E(k,co+1) m H% m H%
@ a o

e Block cipher is effectively turned into a stream cipher
e No padding problem
e Highly parallelizable

e Random IV prevents reuse of key stream




Other modes

Many other modes that achieve specific goals exist.

e feedback modes: CFB, OFB, ...
e device encryption: LRW, XEX, XTS, ...

e authenticated encryption: OCB, EAX, GCM, ...

In most modern communication systems, we tend to use (if possible)

AEAD = Authenticated Encryption with Associated Data

in order to guarantee confidentiality + integrity of messages and prevent replay attacks


https://en.wikipedia.org/wiki/Galois/Counter_Mode

Overview

Public-key encryption



Asymmetric encryption

In general, a cipher might use different keys for encryption and decryption:

m E c D m
ke kd

(includes symmetric ciphers as the special case k. = ky)

if knowledge about one gives no useful information about the other

then one of them can be made public



Public-key encryption

The encryption key k. is made public (kg kept private)

anyone can write to Bob, but only he can read

As implemented by e.g. PGP /GPG

NB : Public-key encryption is very rarely used, if at all, in modern systems

42


http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/GNU_Privacy_Guard

Modular arithmetic

Recall (?)

Definition

We say that a = b when n divides b — a, i.e. b = a+ kn for some integer k
i.e. a and b are equal, up to ("modulo”) a multiple of n
Remarks:

°a= bif and only if a%n=b%n

e lfa=band c= d, then (a+c) = (b+ d) and (ac) = (bd)

n



Rivest-Shamir-Adleman (1977)

Fix some integer, product of two distinct (large) prime numbers n=p - q

M = C = 7Z/nZ, identified with [0, n[

with d - e 1 where p(n) = (p—1)(q — 1).

~—

@ﬁ)



A small (thus very insecure) working example

n = 74989
phi = 69600
e = 52027
d = 10963

d*e mod phi =1

message: 60211
encryption: 13247
decryption: 60211

Try here


https://sagecell.sagemath.org/?z=eJxdj9EKgzAMRd8L_YcgDJyUoW5uU9jHiM2cD2mLCmPI_n2NOnV7aNKem9wmDTnb9tCWRluSQgoDADc4JhDBiUOWS-EeDbOYGYfsypXoWZbG6UUK7a9JnJ-PzF3bmD4MRqNAgdkvaPTxyOcV4lyHK9Iz0gvaaBECWQ1fL37vZkcpyA8y7XLg5E-NoRmlivdy9hmSQsWIaAaV0mqq-fvsHhB2XVlj4QeCgd7BRkJTtS_XN9YUMFQ_ksaNRNz2AeauX90=&lang=python&interacts=eJyLjgUAARUAuQ==

Remarks on RSA

e Modular exponentiation can be efficiently computed ( pow(m,e,n) in Python )
e The public exponent can be chosen be small (often e = 65537)
e Knowing ¢(n), it is easy to deduce d from e (Euclidean algorithm)

e The security of RSA relies on the computational hardness of factoring n

without knowing p and g, the attacker doesn’'t know the value of ¢(n)

e Knowledge of the full pair (d, e) is equivalent to knowing the factors (p, q)

RSA moduli should never be reused



Attacks on RSA (aka factorization algorithms)

There is a very large litterature devoted to the subject of integer factorization.

As of 2024, the best general purpose algorithm is the General Number Field Sieve
(GNFS) that factors an ¢-bit integer in

~ 55070 e

Public factorization record: RSA-250 (2020)


http://en.wikipedia.org/wiki/Integer_factorization
http://en.wikipedia.org/wiki/RSA_numbers#RSA-250

Consequence on key le
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According to RSA Security, Inc.

Symmetric key size

Equivalent RSA key size

80
112
128
256

1024
2048
3072
15360




Real-world RSA

The plain RSA described above has all sorts of problems:
e malleability: E(e,my) - E(e, m2) = E(e, my - mo)
e lack of randomness
o fixed size of plaintext

In practice, a suitable padding scheme needs to be used.

— use a library!


http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

Overview

Key agreement



Secret sharing

Public-key encryption provides a partial solution to the problem of setting up a shared
private key for symmetric encryption on an insecure channel:

e Alice chooses secret k,
e encrypts it with Bob’s public encryption key,
e and sends it to him;

e Bob recovers k using his private decryption key.

Are there problems with that? (hint: yes, some)



”Symmetric” version

e Alice chooses kj and sends it to Bob using his public encryption key;
e Bob chooses kg and sends it to Alice using her public encryption key;
e Shared secret is k := ka @ kg.

Better: neither Alice nor Bob fully controls the final secret.

But two public encryption key pairs are needed. . .



Diffie-Hellman (1976)

e Alice and Bob agree on "safe” parameters n and g.
e Alice chooses «, computes a = g“ and sends it to Bob
n

e Bob chooses 3, computes b = g” and sends it to Alice
n

Shared secret is



Diffie-Hellman problem

Eve is faced with the problem:
given a and b, recover k.

We believe that her best line of attack is:

e solve a = g® for o (or b= g® for ) discrete logarithm problem
n n

e then easily deduce k = g*? as Alice (or Bob) would.



Example: a = 1769¢
2039

2000
1500

1000




DH caveats

e Should always be used in conjunction with authentication to prevent
man-in-the-middle attacks




DH caveats

e Bob should check that Alice does not provide a value of a for which the discrete
log is easy (same on Alice’s side)

Example: a = 1514¢
1856

1500f,

T R T R T PPy




Attacks on DH (aka DLP algorithms)

There also exists a general-purpose probabilistic algorithm for the DLP that takes (on
average) O(y/v) steps (and O(1) memory)

Also: the General Number Field Sieve solves the modular DLP
— use same key lengths as for RSA

Current world records


http://en.wikipedia.org/wiki/Pollard's_rho_algorithm_for_logarithms
https://en.wikipedia.org/wiki/Discrete_logarithm_records
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Generalized DLP

The nice thing about the DLP is that it can be asked for any binary operation *:

Given g and a such that

a=g%=g*xg % *g, find o € N
N———
(0%

So far we used * = modular multiplication, but there are other interesting operations...



Elliptic curves

2 o 2 4
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lgorithms are
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Recall: Generalized DLP

Let (G, - ) be a finite abelian group.

Given g € G and x such that

find ¢ = dlogg(x, g), with m = ordg(g), the smallest m > 0 for which g” = 1.

Best known DL algorithm: (’)(m%) for a generic group G.

(Much smaller for G = (Z/nZ)*.)



Recall

140

120

40

security level

trial division

general number field sieve

key length

1000 2000 3000 4000



Elliptic curves

Definition

An elliptic curve is a plane curve defined by an equation of the form

E: y?’=x3+ax+b.

Example
a= 1—10, b=1 ‘




Some famous elliptic curves

Secp256k1 (Bitcoin, Ethereum)

V=347

Curve25519 (Monero, Zcash, ...)

y? = x3 + 486662x> + x



Addition on an elliptic curve

Given P, Q € &, the line through P and Q intersects £ at a third point, say R = (x, y).
Definition

P+Q::(X7_y)

Fun fact: This makes £ U {O} into an abelian group!

(The point at infinity O = (0, 00) being the neutral element)



Addition on an elliptic curve

F————t————3g

P+Q




DLP on an elliptic curve

Given G € & of (additive) order m and P € £ such that

P=¢(G=G+---+G in &,
¢

find ¢ = dlogg (P, G).
m

(Easy to solve over the real or complex numbers)



Elliptic curves over finite fields

Instead: consider solutions modulo a fixed
prime p % = x3 — x

yv’=x3+ax+b

P Tl

~» E(IFp) elliptic curve over the field with ol
p elements 2]

(a finite abelian group!)




Basic computations are easy...

1 p = 32806352226718822643429

2 a = 5740347588375554626864

3 b = 20798093206103976495852

4

5 E = EllipticCurve(GF(p),[a,b])

4]

7 P = E([29155336995917130553754, 8373057744944244479010])

8 Q = E([3415221595160200314960, 11073266156995522792160])

9

10 24P + 3%Q

Evaluate Language: Sage v
Share

(9956939019642126506349 : 26680698275736540367982 : 1)

Help | Powered by SageMath

...but the DLP is hard!


https://sagecell.sagemath.org/?z=eJwljrtuAlEMRPuV9h9uuZAt_Bjb10WqCGihRhSAUiBRrFCS749XVNZoznhmaZ9NpZOriYgH914HCslxuJZpAVKE9a5hZnDx7hiHW3lCkZ1ShZxJMxxp3WQcxmFX9u75fCw_j_vX7-vvezrsp2Uzn6_z7bJZieNKTGdJNlP1TEsOVioVhrlVX4kIIAEBEElMa_b0Tiq4NrOlsZMQKSOd5sZMoeLOtj4tJFKKeLfK9tg-mm5P_7fJM8Q=&lang=sage&interacts=eJyLjgUAARUAuQ==

Size of £

Theorem (Hasse bound)

#E(Fp) = 1+ p+O(V/p)

hence #&(Fp) =~ p.

We use elliptic curves with points G of large order m = p.



ECDH

Alice and Bob agree on "safe” parameters £ and G.
Alice chooses a, computes A = aG in €.
Bob choooses b, computes B = bG in £.

Shared secret is

K := (ab)G = aB = bA.



Parameter generation

To get £ bits of security:

e choose a 2/-bit prime p
e an elliptic curve & over I,

e and a point G on & of (almost) prime order m that generates (most of) £(Fp).

Much harder to manufacture than e.g. for RSA — but can be reused.



Overview

Digital signatures



To achieve message authentication

e An authenticated encryption mode can be used (e.g. GCM)

e Or a dedicated primitive like HMAC (that doesn’t provide confidentiality)

but these do not provide sender authentication (why ?)

= message forgery is possible (by Bob)

= message repudiation is possible (by Alice)



Digital signatures

A digital signature scheme consists of a pair of algorithms:

e signature S(kpiy, m)

e verification V/(kyyp, m,s) € {0,1}

(along with a key generation algorithm that produces pairs (Kpriv, Kpub))



Requirements of a signature algorithm

e Correct verification:

Verify (kpub, m, Sign(Kpriv, m)) = true for all m

e Non-forgery

impossible in practice to manufacture a valid signature for a (new) message m
without access to kpriv

In particular: not possible to recover kyi, from k.

e Consequence: non-repudiation

If Alice keeps kpriy private and a valid signature for ky,p, is encountered, it means
she did sign (a signature is binding)



Desirable properties of a signature algorithm

e Efficiency:

the Sign and Verify algorithms should be reasonably fast

e Signature conciseness:

the produced signatures s should be reasonably small

e Key conciseness:

the private and public keys kpriy and kyup, should not be too large

o Efficient key generation:
should be easy to come up with new pairs (Kpriv, Kpub)

e.g. reusable parameters



Hasn-then-sign paradigm

To sign a message m with private key ke:

e Alice computes h = H(m);

e appends s = E(ke, h) to m.
Upon reception of a pair (m,s):

e Bob checks with associated public key whether

?

D(k4,s) = H(m).



Timeline of signature algorithms

e 30's - 90's: RSA-PSS, DSA (integer-based)
e 00's - 20's: ECDSA, EdDSA, Ed25519 (elliptic curve-based)

e 30's - ?7's: quantum-resistant signatures (lattice or hash-based)
As of 2024, there is an ongoing standardization process led by NIST to specify:

e ML-DSA (previously known as CRYSTALS-Dilithium)

e SLH-DSA (previously known as SPHINCS+)

as well and alternative lattice-based signature scheme (previously known as FALCON)

and a key establishment primitive ML-KEM (previously known as CRYSTALS-Kyber)


https://csrc.nist.gov/News/2023/three-draft-fips-for-post-quantum-cryptography
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