Quantum algorithms II: Grover

Quantum computing
G. Chênevert

Feb. 12, 2021

Last time

- reversible evaluation of boolean functions U_{f}
- quantum circuit model of computation
- complexity = \# of gates
(+ complexity of classical pre- and post-processing)
- quantum advantage
- example: Deutsch-Josza algorithm

Quantum algorithms II: Grover

Grover's algorithm

Towards Shor

Grover (1970)

Grover (1996)

Grover diffusion operator

Search problem

Suppose we have a decision function $f: X \rightarrow\{0,1\}$ defined on a set X of size N.
The search problem defined by f is to find some $x \in X$ for which $f(x)=1$.
Examples: database queries, factoring integers, bitcoin mining, ...
In the general (unstructured) case: a classical algorithm requires $\mathcal{O}(N)$ queries.
(Of course can do better if e.g. the data is sorted)

Grover's algorithm

Performs unstructured searches for arbitrary criteria in $\mathcal{O}(\sqrt{N})$ time.
\Longrightarrow quadratic speedup

Works in two steps:

- phase inversion
- amplitude amplification
iterated a certain number of times

Circuit for Grover's algorithm

Grover diffusion operator

Phase inversion

Simplifying assumptions:

- $X=\llbracket 0, N \llbracket$
- $N=2^{n}$
- the equation $f(x)=1$ admits a unique solution $\omega \in X$

So the problem is now: find $\omega \in X$ given access to a oracle for $f: \llbracket 0, N \llbracket \rightarrow\{0,1\}$

$$
\text { where } f(x)= \begin{cases}1 & \text { if } x=\omega \\ 0 & \text { else }\end{cases}
$$

Phase inversion

ω is detected by inverting its phase: " $U_{\omega}|x\rangle=(-1)^{f(x)}|x\rangle$ "
Grover diffusion operator

Actually

$$
U_{\omega}|x\rangle \otimes|-\rangle=(-1)^{f(x)}|x\rangle \otimes|-\rangle
$$

This is exactly what the oracle U_{f} does! So in fact " $U_{\omega}=U_{f}$ ".

Amplitude amplification

The Grover diffusion operator G is

$$
G=2|s\rangle\langle s|-1
$$

where

$$
|s\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle
$$

Geometrical interpretation:

$$
\begin{gathered}
G|s\rangle=|s\rangle \\
G|\psi\rangle=-|\psi\rangle \quad \text { when }\langle s \mid \psi\rangle=0
\end{gathered}
$$

$U_{s}=-G$ is a reflection through the hyperplane normal to $|s\rangle$

Amplitude amplification

Remark: U_{ω} is a reflection, too.
Actually U_{ω} acts on $\mathcal{V}=\mathcal{V}_{N} \otimes|-\rangle$ as

$$
I-2|\omega\rangle\langle\omega|=\operatorname{diag}(1, \ldots, \underbrace{-1}_{\omega}, \ldots, 1) .
$$

In general I $-2|\psi\rangle\langle\psi|$ is a reflection through the hyperplane normal to $|\psi\rangle$.
$G U_{\omega}$: unitary transformation of \mathcal{V} that inverts every vector $|\psi\rangle$ orthogonal to both $|s\rangle$ and $|\omega\rangle$ - and acts as a rotation in the plan spanned by $|s\rangle$ and $|\omega\rangle$

Amplitude amplification

Consider unitary $\left|s^{\prime}\right\rangle \sim|s\rangle-\langle\omega \mid s\rangle|\omega\rangle$, and write $\langle\omega \mid s\rangle=\frac{1}{\sqrt{N}}=\sin \frac{\theta}{2}$.
Initial state:

$$
|\psi\rangle=|s\rangle=\cos \frac{\theta}{2}\left|s^{\prime}\right\rangle+\sin \frac{\theta}{2}|\omega\rangle
$$

$G U_{\omega}$ is a rotation of θ (exercise!), so after k iterations:

$$
\begin{gathered}
\left(G U_{\omega}\right)^{k}|\psi\rangle=\cos \left(\frac{\theta}{2}+k \theta\right)\left|s^{\prime}\right\rangle+\sin \left(\frac{\theta}{2}+k \theta\right)|\omega\rangle \\
\mathbb{P}\left[\mathcal{M}\left(G U_{\omega}\right)^{k}|\psi\rangle=|\omega\rangle\right]=\sin ^{2}\left(\frac{\theta}{2}+k \theta\right)
\end{gathered}
$$

Optimal number of iterations

Each iteration brings the state closer to $|\omega\rangle$ by an angle of $\theta=2 \arcsin \frac{1}{\sqrt{N}}$.
Until it starts moving away... Sage visualization

Optimal number of iterations

So, in order to maximize the probability of measuring $|\omega\rangle$, take

$$
\left(k+\frac{1}{2}\right) \theta \approx \frac{\pi}{2} \quad \Longleftrightarrow \quad k \approx \frac{\pi}{2 \theta}-\frac{1}{2}
$$

When N is large (interesting case!) we have $\theta \approx \sin \theta=\frac{2}{\sqrt{N}}$
so the optimal number of iterations is $k \approx \frac{\pi \sqrt{N}}{4}$.
Closely related to this rather surprising way to approximate π !

Implementation of G

$$
G=2|s\rangle\langle s|-1
$$

- G is more easily computed if we change the basis:

$$
G=H^{\otimes n} \otimes \underbrace{(2|0\rangle\langle 0|-I)}_{G_{0}} \otimes H^{\otimes n}
$$

- $G_{0} \sim-G_{0}=U_{0}=\operatorname{diag}(-1,1, \ldots, 1)$:

$$
U_{0}|x\rangle=\left\{\begin{aligned}
-|x\rangle & \text { if } x=0 \\
|x\rangle & \text { if } x \neq 0
\end{aligned}\right.
$$

Implementation of G

Example: with $n=4$
$G_{0}:$

G :

Application: breaking cryptography

Alice sends secret messages to Bob:

Application: breaking cryptography

They agree on a secret n-bit encryption key k.
Alice encrypts her messages with k :

$$
c=E(k, m)
$$

and Bob decrypts them using the same k :

$$
m=D(k, c)
$$

Known plaintext attack

Imagine the attacker, Eve, knows the message m corresponding to one ciphertext c.
Then she can try to recover the secret key k in order to be able to decrypt all messages exchanged by Alice and Bob.
(A plausible scenario: this is exactly what happened with Enigma during WWII).
This is a search problem: she's looking for $k \in \llbracket 0,2^{n} \llbracket$ for which $D(k, c)=m$.

Brute force attack on the key

Suppose $n=128$ (today's standard for AES).
With a classical computer: Eve will need to go through the 2^{128} possibilities: impractical for at least the next 30 years.
\Longrightarrow secure communication \checkmark
With a quantum computer running Grover's algorithm: Eve will recover the key in $\sqrt{2^{128}}=2^{64}$ steps: doable today using specialized hardware.
\Longrightarrow no more confidentiality X

Solution

In case this happens:
" post-quantum symmetric cryptography": just move to 256-bit keys
No biggie!

Quantum algorithms II: Grover

Towards Shor

Quantum circuits

In the end, a quantum circuit is just a big unitary matrix.
n qubits: $2^{n} \times 2^{n}$ unitary matrix

Things we can implement using unitary matrices:

- reflections
- rotations
- Fourier transforms

Recall: Discrete Fourier Transform

N-point Fourier transform of a sequence $x[0], \ldots, x[N-1]$:

$$
y[k]=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-\frac{2 \pi i j k}{N}} x[j]
$$

Matrix formulation:

$$
\mathbf{y}=\mathcal{F} \mathbf{x} \quad \text { with } \quad \mathcal{F}=\frac{1}{\sqrt{N}}\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & \zeta & \zeta^{2} & \ldots & \zeta^{N-1} \\
\vdots & \vdots & & & \vdots \\
1 & \zeta^{N-1} & \zeta^{2(N-1)} & \ldots & \zeta^{(N-1)(N-1)}
\end{array}\right]
$$

where ζ is some primitive N-th root of unity

Discrete Fourier Transform

Special case: $N=2$

$$
\mathcal{F}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \tag{!}\\
1 & -1
\end{array}\right]=H
$$

Inverse Fourier transform:

$$
\mathcal{F}^{-1}=\mathcal{F}^{*}=\mathcal{F}^{\dagger}
$$

Fourier transforms are unitary

Quantum Fourier Transform

Suppose we have a quantum state $|\psi\rangle \in \mathcal{V}_{N}$:

$$
|\psi\rangle=\sum_{x<N} \alpha_{x}|x\rangle
$$

Its Fourier transform is the state

$$
\mathcal{F}|\psi\rangle=\sum_{y<N} \beta_{y}|y\rangle
$$

defined by

$$
\beta_{y}=\frac{1}{\sqrt{N}} \sum_{x<N} \zeta^{x y} \alpha_{x}
$$

Quantum Fourier Transform

In other words: from a theoretical point of view

$$
\text { QFT of a state }=\text { DFT of the probability amplitudes }
$$

Often written in the equivalent form:

$$
\mathcal{F}|x\rangle=\frac{1}{\sqrt{N}} \sum_{y<N} \zeta^{x y}|y\rangle
$$

Naive classical algorithm: $\mathcal{O}\left(N^{2}\right)$ operations
Cooley-Tukey (1965): Fast Fourier Transform $\mathcal{O}(N \log N)$ operations

Quantum Fourier Transform

Theorem

There exists a quantum circuit with $\mathcal{O}\left((\log N)^{2}\right)$ gates that computes the QFT.
For $N=2^{n}$, a circuit with $\mathcal{O}\left(n^{2}\right)$

- Hadamard gates $H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
- controlled phase shifts $R_{m}=P\left(\frac{2 \pi}{2^{m}}\right)=\left[\begin{array}{cc}1 & 0 \\ 0 & e^{\frac{2 \pi i}{2^{m}}}\end{array}\right]$
- swaps
suffices.

Small values of n

$$
\begin{aligned}
& n=0: \mathcal{F}=I \checkmark \\
& n=1: \mathcal{F}=H \\
& n=2: \text { with } S=R_{2}=P\left(\frac{\pi}{2}\right)
\end{aligned}
$$

$$
\mathcal{F}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]=\begin{aligned}
& \left|x_{0}\right\rangle-H \\
& \left|x_{1}\right\rangle>
\end{aligned}
$$

Small values of n

$$
n=3: \text { with } T=R_{3}=P\left(\frac{\pi}{4}\right)
$$

General QFT circuit

- n Hadamard gates
- $1+2+\cdots+(n-1)=\binom{n}{2}$ controlled phase shifts
- $\leq\binom{ n}{2}$ swaps

