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Last time

e reversible evaluation of boolean functions Ur
e quantum circuit model of computation

e complexity = # of gates

(4+ complexity of classical pre- and post-processing)
e quantum advantage

e example: Deutsch-Josza algorithm



Quantum algorithms Il: Grover

Grover's algorithm



Grover (1970)




Grover (1996)

Grover diffusion operator
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Repeat O(v/N) times



Search problem

Suppose we have a decision function f : X — {0,1} defined on a set X of size N.
The search problem defined by f is to find some x € X for which f(x) = 1.
Examples: database queries, factoring integers, bitcoin mining, ...

In the general (unstructured) case: a classical algorithm requires O(N) queries.

(Of course can do better if e.g. the data is sorted)



Grover’s algorithm

Performs unstructured searches for arbitrary criteria in O(v/'N) time.
— quadratic speedup
Works in two steps:

e phase inversion

e amplitude amplification

iterated a certain number of times



Circuit for Grover’s algorithm

Grover diffusion operator
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Repeat O(v/N) times



Phase inversion

Simplifying assumptions:
o X =[0,N[
o N =2"

e the equation f(x) = 1 admits a unique solution w € X

So the problem is now: find w € X given access to a oracle for f : [0, N[— {0,1}

1l ifx=w
where f(x) =
0 else.



Phase inversion

w is detected by inverting its phase: " U, |x) = (—1)f)|x)"

Grover diffusion operator
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Repeat O(v/N) times

Actually
U |x) @ =) = (-1)"™ |x) @ |-)

This is exactly what the oracle Ur does! So in fact " U,, = Uf".
]



Amplitude amplification

The Grover diffusion operator G is

G [s)(s| — 1
where
s) = —= D _Ix)
VN =
Geometrical interpretation:
Gls) =s)
Gy = —lv)  when (sj) =0
Us = —G is a reflection through the hyperplane normal to |s)



Amplitude amplification

Remark: U,, is a reflection, too.
Actually U, actson V =Vy ® |-) as

/-2 = diag(1,..., ~1,...,1).
w)(w| = diag(L,..., ~1,...,1)

w

In general | —2[1)(¢)| is a reflection through the hyperplane normal to |¢).

GU,: unitary transformation of V that inverts every vector [1) orthogonal to both |s)

and |w) — and acts as a rotation in the plan spanned by |s) and |w)



Amplitude amplification

Consider unitary |s’) ~ |s) — (w|s)|w), and write (w|s) = ﬁ = sin

Initial state:
|y =|s) = cosg |s'> + sin % |w)

GU,, is a rotation of 6 (exercise!), so after k iterations:

(GUL) ) = cos(§ + k) |s') + sin(§ + kb) |w)

P[ M(GUL) [Y) = |w) | = sin?(§ + k)

NI



Optimal number of iterations

U, s)

1
Each iteration brings the state closer to |w) by an angle of § = 2arcsin —.

VN

Until it starts moving away. .. Sage visualization


https://sagecell.sagemath.org/?z=eJyVVE2P2jAQva_EfxilHJwQIGbpoUiReuuNyx5WWmCRIQYsHDu1vQWq_viOkwAJS1ddCwVn3szzm4_4u1COG7Z2nYfOQ8Y3sFwSlVopMm5IElP8xY-xZCsu06CrukEYw_6Kjz2eXPB9iWfCFpKd0lnwi6-dNjaIIWB5IYV7y3j5Vhi9YiuBFoGGRTjpPACu6jmFFEavqnqx3C0NU5nOl5bzjNDR4zisoAP6vbwMapRLnnPlyDQE-AJbzeQENkJlcKi8C4OpkkAXTuRMgnrLV9yA3oDwBXBCKwusQGFHCKAH1hlCCjEcR_anKVn7QIejcKBIGNYC3I475sVGzApF6LB2PcMIlS4RQiPk3NeAyLcI_TCs2Im1JWEzebE51w_SFC4VnPj-QL18fC8FZow-EOxCEsa-V1j6tZbapMFKsvU-CN9FOH7EEnT_zOc651s2n2PttpJ3sSWkP6Bf48G3W5IYNlo5K37zlI7fM7Y0rLUlZcJYp9hX5PxyJd0advpAmG1JogMatTi94QPeT2utVV4aeg2xO3TFuBiOuVBpn_oNO6b4fzobTrWB2QK7tCyHKKWNc6sdl5ZPbo1-PeEQVP0l02h2mZ5Fg-G55ZK0oNlhgSht8HlC8oSD2qxR9BwOm0W8p8Q65jgGV0WJkKhXcWD0Pf-bIW18241E2yF--UzwlPK0NuJrikif_iucy5sz2zfI_xw7O76OcEAMHAEPK0Us7qpI7qXMC4vQYHS1eCrhqfzEcmzcjYh66gotT1utyIyIPpL44YN664XNxKI09O4aktY0tBVdR_TUnEz_uNvkzxSwviwLTPl8GdIkiUp9h0V1B_4FDZSYGw==&lang=sage&interacts=eJyLjgUAARUAuQ==

Optimal number of iterations

So, in order to maximize the probability of measuring |w), take

1
(k+2) 2 20 2
When N is large (interesti 1) we have  ~ sin§ — —2
en IS large (interesting case!) we nave ~ SNV = ——
& & \/N

. . . . v N
so the optimal number of iterations is k ~ Y

Closely related to this rather surprising way to approximate 7 !


https://arxiv.org/pdf/1912.02207.pdf
https://www.youtube.com/watch?v=HEfHFsfGXjs

Implementation of G

G =2|s)(s| =1
e G is more easily computed if we change the basis:
G = H®" ® (2|0)(0| — 1) @H®"
—————

Go
o Gy~ —Gy= Up=diag(—-1,1,...,1):

Uplx) = —|x) ifsz
|x) if x # 0.



Implementation of G

Example: with n =4

Go:




Application: breaking cryptography

Alice sends secret messages to Bob:




Application: breaking cryptography

They agree on a secret n-bit encryption key k.

Alice encrypts her messages with k:
c = E(k,m)

and Bob decrypts them using the same k:

m = D(k, c).



Known plaintext attack

Imagine the attacker, Eve, knows the message m corresponding to one ciphertext c.

Then she can try to recover the secret key k in order to be able to decrypt all
messages exchanged by Alice and Bob.

(A plausible scenario: this is exactly what happened with Enigma during WWII).

This is a search problem: she's looking for k € [[0,2"[ for which D(k, c) = m.



Brute force attack on the key

Suppose n = 128 (today's standard for AES).

With a classical computer: Eve will need to go through the 21?8 possibilities:
impractical for at least the next 30 years.

— secure communication v

With a quantum computer running Grover's algorithm: Eve will recover the key in
/2128 — 264 steps: doable today using specialized hardware.

= no more confidentiality X


https://www.sciengines.com/technology-platform/sciengines-hardware/

Solution

In case this happens:
" post-quantum symmetric cryptography”: just move to 256-bit keys

No biggie!
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Towards Shor



Quantum circuits

In the end, a quantum circuit is just a big unitary matrix.
n qubits: 27 x 2™ unitary matrix
Things we can implement using unitary matrices:

reflections

rotations

Fourier transforms



Recall: Discrete Fourier Transform

N-point Fourier transform of a sequence x[0], ..., x[N — 1]
DR
vkl = — N
\f =
Matrix formulation:
1 1 1
1 2 N-1
y=Fx with F = L _ C ‘ ¢ _
VN | :
1 CN_l C2(N—1) o C(N—l)(N—l)

where ( is some primitive N-th root of unity



Discrete Fourier Transform

Special case: N =2

1 (1 1
F=— =H (!
V2 [1 -1 ()
Inverse Fourier transform:
Fl=r=Fr

Fourier transforms are unitary



Quantum Fourier Transform

Suppose we have a quantum state |¢)) € Vy:

) = 3 alx)

x<N
Its Fourier transform is the state
Floy=>Y_8yly)
y<N

defined by
1 X
6}’ = \/N E Cyax-

x<N




Quantum Fourier Transform

In other words: from a theoretical point of view

QFT of a state = DFT of the probability amplitudes

Often written in the equivalent form:

Flx) = fZ@w

y<N

Naive classical algorithm: O(N?) operations

Cooley-Tukey (1965): Fast Fourier Transform O(N log N) operations




Quantum Fourier Transform

Theorem

There exists a quantum circuit with O((log N)?) gates that computes the QFT.

For N = 2", a circuit with O(n?)

1 (1 1
e Hadamard gates H = —
V2|1 -1

1 0
e controlled phase shifts R, = P(%—Z) = [ 27”]
0 e2m
e swaps

suffices.
R



Small values of n

n=0:F=1V
n=1.F=HV

n=2: with S = Ry = P(%)
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Small values of n

n=3: with T = Ry = P(%)

|z0)
|z1)

|z2)

=




General QFT circuit

) By oo R H R 10) + e2ri0n-win 1)
i J. - H 4R, sHR, 4} —m ————— |U> + e?ﬂ'i(l.j:-..ju“)

ljn1 . [0) 4 €2i0dn-1in|1)
Un . H [0y + e??\'injnll)

|72

e n Hadamard gates

n

e 1+2+ -+ (n—1) = (5) controlled phase shifts

o < (3) swaps
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