
Quantum algorithms II: Grover

Quantum computing

G. Chênevert

Feb. 12, 2021

mailto:gabriel.chenevert@junia.com

Last time

• reversible evaluation of boolean functions Uf

• quantum circuit model of computation

• complexity = # of gates

(+ complexity of classical pre- and post-processing)

• quantum advantage

• example: Deutsch-Josza algorithm

Quantum algorithms II: Grover

Grover’s algorithm

Towards Shor

Grover (1970)

Grover (1996)

Search problem

Suppose we have a decision function f : X → {0, 1} defined on a set X of size N.

The search problem defined by f is to find some x ∈ X for which f (x) = 1.

Examples: database queries, factoring integers, bitcoin mining, . . .

In the general (unstructured) case: a classical algorithm requires O(N) queries.

(Of course can do better if e.g. the data is sorted)

Grover’s algorithm

Performs unstructured searches for arbitrary criteria in O(
√
N) time.

=⇒ quadratic speedup

Works in two steps:

• phase inversion

• amplitude amplification

iterated a certain number of times

Circuit for Grover’s algorithm

Phase inversion

Simplifying assumptions:

• X = [[0,N[[

• N = 2n

• the equation f (x) = 1 admits a unique solution ω ∈ X

So the problem is now: find ω ∈ X given access to a oracle for f : [[0,N[[→ {0, 1}

where f (x) =

1 if x = ω

0 else.

Phase inversion

ω is detected by inverting its phase: ”Uω|x〉 = (−1)f (x)|x〉”

Actually

Uω |x〉 ⊗ |−〉 = (−1)f (x) |x〉 ⊗ |−〉

This is exactly what the oracle Uf does! So in fact ”Uω = Uf ”.

Amplitude amplification

The Grover diffusion operator G is

G = 2|s〉〈s| − I

where

|s〉 =
1√
N

N−1∑
x=0

|x〉.

Geometrical interpretation:

G |s〉 = |s〉

G |ψ〉 = −|ψ〉 when 〈s|ψ〉 = 0

Us = −G is a reflection through the hyperplane normal to |s〉

Amplitude amplification

Remark: Uω is a reflection, too.

Actually Uω acts on V = VN ⊗ |−〉 as

I − 2|ω〉〈ω| = diag(1, . . . , −1︸︷︷︸
ω

, . . . , 1).

In general I − 2|ψ〉〈ψ| is a reflection through the hyperplane normal to |ψ〉.

GUω: unitary transformation of V that inverts every vector |ψ〉 orthogonal to both |s〉

and |ω〉 – and acts as a rotation in the plan spanned by |s〉 and |ω〉

Amplitude amplification

Consider unitary |s ′〉 ∼ |s〉 − 〈ω|s〉|ω〉, and write 〈ω|s〉 = 1√
N

= sin θ
2 .

Initial state:

|ψ〉 = |s〉 = cos θ2 |s ′〉+ sin θ
2 |ω〉

GUω is a rotation of θ (exercise!), so after k iterations:

(GUω)k |ψ〉 = cos(θ2 + kθ) |s ′〉+ sin(θ2 + kθ) |ω〉

P
[
M(GUω)k |ψ〉 = |ω〉

]
= sin2(θ2 + kθ)

Optimal number of iterations

Each iteration brings the state closer to |ω〉 by an angle of θ = 2 arcsin
1√
N
.

Until it starts moving away. . . Sage visualization

https://sagecell.sagemath.org/?z=eJyVVE2P2jAQva_EfxilHJwQIGbpoUiReuuNyx5WWmCRIQYsHDu1vQWq_viOkwAJS1ddCwVn3szzm4_4u1COG7Z2nYfOQ8Y3sFwSlVopMm5IElP8xY-xZCsu06CrukEYw_6Kjz2eXPB9iWfCFpKd0lnwi6-dNjaIIWB5IYV7y3j5Vhi9YiuBFoGGRTjpPACu6jmFFEavqnqx3C0NU5nOl5bzjNDR4zisoAP6vbwMapRLnnPlyDQE-AJbzeQENkJlcKi8C4OpkkAXTuRMgnrLV9yA3oDwBXBCKwusQGFHCKAH1hlCCjEcR_anKVn7QIejcKBIGNYC3I475sVGzApF6LB2PcMIlS4RQiPk3NeAyLcI_TCs2Im1JWEzebE51w_SFC4VnPj-QL18fC8FZow-EOxCEsa-V1j6tZbapMFKsvU-CN9FOH7EEnT_zOc651s2n2PttpJ3sSWkP6Bf48G3W5IYNlo5K37zlI7fM7Y0rLUlZcJYp9hX5PxyJd0advpAmG1JogMatTi94QPeT2utVV4aeg2xO3TFuBiOuVBpn_oNO6b4fzobTrWB2QK7tCyHKKWNc6sdl5ZPbo1-PeEQVP0l02h2mZ5Fg-G55ZK0oNlhgSht8HlC8oSD2qxR9BwOm0W8p8Q65jgGV0WJkKhXcWD0Pf-bIW18241E2yF--UzwlPK0NuJrikif_iucy5sz2zfI_xw7O76OcEAMHAEPK0Us7qpI7qXMC4vQYHS1eCrhqfzEcmzcjYh66gotT1utyIyIPpL44YN664XNxKI09O4aktY0tBVdR_TUnEz_uNvkzxSwviwLTPl8GdIkiUp9h0V1B_4FDZSYGw==&lang=sage&interacts=eJyLjgUAARUAuQ==

Optimal number of iterations

So, in order to maximize the probability of measuring |ω〉, take

(k + 1
2)θ ≈ π

2
⇐⇒ k ≈ π

2θ
− 1

2

When N is large (interesting case!) we have θ ≈ sin θ =
2√
N

so the optimal number of iterations is k ≈ π
√
N

4
.

Closely related to this rather surprising way to approximate π !

https://arxiv.org/pdf/1912.02207.pdf
https://www.youtube.com/watch?v=HEfHFsfGXjs

Implementation of G

G = 2|s〉〈s| − I

• G is more easily computed if we change the basis:

G = H⊗n ⊗ (2|0〉〈0| − I)︸ ︷︷ ︸
G0

⊗H⊗n

• G0 ∼ −G0 = U0 = diag(−1, 1, . . . , 1):

U0|x〉 =

−|x〉 if x = 0

|x〉 if x 6= 0.

Implementation of G

Example: with n = 4

G0:

|q0〉 X • X

|q1〉 X • X

|q2〉 X • X

|q3〉 X • X

|q4〉 X Z X

G :

|q0〉 H X • X H

|q1〉 H X • X H

|q2〉 H X • X H

|q3〉 H X • X H

|q4〉 H X Z X H

Application: breaking cryptography

Alice sends secret messages to Bob:

Application: breaking cryptography

They agree on a secret n-bit encryption key k.

Alice encrypts her messages with k :

c = E (k,m)

and Bob decrypts them using the same k :

m = D(k , c).

Known plaintext attack

Imagine the attacker, Eve, knows the message m corresponding to one ciphertext c .

Then she can try to recover the secret key k in order to be able to decrypt all

messages exchanged by Alice and Bob.

(A plausible scenario: this is exactly what happened with Enigma during WWII).

This is a search problem: she’s looking for k ∈ [[0, 2n[[for which D(k , c) = m.

Brute force attack on the key

Suppose n = 128 (today’s standard for AES).

With a classical computer: Eve will need to go through the 2128 possibilities:

impractical for at least the next 30 years.

=⇒ secure communication X

With a quantum computer running Grover’s algorithm: Eve will recover the key in√
2128 = 264 steps: doable today using specialized hardware.

=⇒ no more confidentiality 7

https://www.sciengines.com/technology-platform/sciengines-hardware/

Solution

In case this happens:

”post-quantum symmetric cryptography”: just move to 256-bit keys

No biggie!

Quantum algorithms II: Grover

Grover’s algorithm

Towards Shor

Quantum circuits

In the end, a quantum circuit is just a big unitary matrix.

n qubits: 2n × 2n unitary matrix

Things we can implement using unitary matrices:

• reflections

• rotations

• . . .

• Fourier transforms

Recall: Discrete Fourier Transform

N-point Fourier transform of a sequence x [0], . . . , x [N − 1]:

y [k] =
1√
N

N−1∑
j=0

e−
2πijk
N x [j]

Matrix formulation:

y = F x with F =
1√
N


1 1 1 . . . 1

1 ζ ζ2 . . . ζN−1

...
...

...

1 ζN−1 ζ2(N−1) . . . ζ(N−1)(N−1)


where ζ is some primitive N-th root of unity

Discrete Fourier Transform

Special case: N = 2

F =
1√
2

[
1 1

1 −1

]
= H (!)

Inverse Fourier transform:

F−1 = F∗ = F†

Fourier transforms are unitary

Quantum Fourier Transform

Suppose we have a quantum state |ψ〉 ∈ VN :

|ψ〉 =
∑
x<N

αx |x〉

Its Fourier transform is the state

F |ψ〉 =
∑
y<N

βy |y〉

defined by

βy =
1√
N

∑
x<N

ζxy αx .

Quantum Fourier Transform

In other words: from a theoretical point of view

QFT of a state = DFT of the probability amplitudes

Often written in the equivalent form:

F |x〉 =
1√
N

∑
y<N

ζxy |y〉

Naive classical algorithm: O(N2) operations

Cooley-Tukey (1965): Fast Fourier Transform O(N logN) operations

Quantum Fourier Transform

Theorem

There exists a quantum circuit with O((logN)2) gates that computes the QFT.

For N = 2n, a circuit with O(n2)

• Hadamard gates H =
1√
2

[
1 1

1 −1

]

• controlled phase shifts Rm = P(2π
2m) =

[
1 0

0 e
2πi
2m

]
• swaps

suffices.

Small values of n

n = 0: F = I X

n = 1: F = H X

n = 2: with S = R2 = P(π2)

F =
1

2


1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i

 =
|x0〉 H S ×

|x1〉 • H ×
X

Small values of n

n = 3: with T = R3 = P(π4)

|x0〉 H S T ×

|x1〉 • H S

|x2〉 • • H ×

General QFT circuit

• n Hadamard gates

• 1 + 2 + · · ·+ (n − 1) =
(n
2

)
controlled phase shifts

• ≤
(n
2

)
swaps

	Grover's algorithm
	Towards Shor

