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Quantum algorithms I11: Shor

Towards Shor



Quantum circuits

In the end, a quantum circuit is just a big unitary matrix.
n qubits: 27 x 2™ unitary matrix
Things we can implement using unitary matrices:

reflections

rotations

Fourier transforms



Recall: Discrete Fourier Transform

N-point Fourier transform of a sequence x[0], ..., x[N — 1]
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Quantum Fourier Transform

Suppose we have a quantum state [¢) € Vp:

) = 3" ax )

x<N
Its Fourier transform is the state
Floy=>Y_8yly)
y<N

defined by
E X
/By = — N < yOéX.

x<N



Quantum Fourier Transform

In other words: from a theoretical point of view

QFT of a state = DFT of the probability amplitudes

Often written in the equivalent form:

Flx) = way

y<N

Naive classical algorithm: O(N?) operations

Cooley-Tukey (1965): Fast Fourier Transform O(N log N) operations



Quantum Fourier Transform

Theorem

There exists a quantum circuit with O((log N)?) gates that computes the QFT.

For N = 2", we can build such a circuit with O(n?)

e Hadamard gates H = Lt
V2 |1 —1

1 0
e controlled phase shifts R, = P(g—;r) = [ zm]

® swaps.



Small values of n
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Small values of n
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General QFT circuit

) By oo R H R 10) + e2ri0n-win 1)
i J. - H 4R, sHR, 4} —m ————— |U> + eZWi[]'jQ"']"‘l>

i1 . [0) + e27i0dn-1n |1)
‘j” . H |U> + 2mi0-jn |1>

|72

e n Hadamard gates

n

e 1+2+ -+ (n—1) = (5) controlled phase shifts

o < (g) swaps
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Period detection



Summary: QFT

Fix N = 2",

The N-point (quantum) Fourier Transform

Flx) = Z CNy), ¢N =1 primitive
y<N

is computable with a quantum circuit of size O(n?).



Application: Period detection

Suppose f : Zy — Zy is r-periodic:
f(x+r)=f(x) for all x.

Problem: find (smallest positive such) r.
A special case of the hidden subgroup problem.

Idea: we can detect the period using a Fourier transform.



Quantum period detection

) = |0) #{HS" | HQFT [+ =

Theorem

If f is r-periodic, then a multiple ofy is measured.

Remark: for the moment we are assuming that r | N (else replace r by GCD(r, N))



Proof in the r | N case

Write N = rs.

Evolution of the quantum state:
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x<N \/NX<N
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Now write x = j + kr, so that f(x) = f(j).



Proof in the r | N case
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Proof in the r | N case

0= 2SN i) @ 1))

t<r j<r

Only values of y of the form ts have a non-zero probability of being measured:
1 2

Ply=ts] = || 3 () IFG)

j<r

In particular, in the special case where all values f(j) are distinct:
_ _ 1 s\jt|12 _ 1 _ 1
Ply = ts] —sz\(C Yl —ﬁzl—;

<r j<r



Approximate period detection

Now suppose f : [0, N[— [0, N[ is almost r-periodic:

f(x+r)=f(x) forall 0 <x < N —r.

Theorem

If f is almost r-periodic, then an approximate multiple of g is probably measured.

And then we can (probably) recover r with classical post-processing.



Analysis in the general case

Write N = rs + a with 0 < a < r. Everything is the same until

W)= 33 Sl o 1f0)

y<N j<r k<s;
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Analysis in the general case

NZZC’ Y) ) @ F(G)

y<N j<r
To simplify: under the assumption that all the p values f(j) are distinct:

Ply] = g (2000 + (= (i)

cf. Sage visualization


https://sagecell.sagemath.org/?z=eJyFUkFuwjAQvFfiDytEhQ2mSVBbVUiWeuvNF45ViwIYsGqcZB3a8Puu0ygJcOgeHGc8npm1_WpcqTHdlIO7wd1W72DFlPTWbDWyRCTzF5EIgtOTLWXyLGy61lYOR2o05AKwY87jHvGx5WHN84fsZ6Xdt9yl1uvmf52ilyWeNF8Eb6AK_p5VoghQAP7GUIZWjGO5mVQcpIR40a11s1CoyxM6KK4VNFn_t6mxKMgkau366ZaUDhR1fpuwAAkqirBDbEDgHvCa2rglkfqcwwQYMSd141BME07YFBjOLG_RgF3kyNm5y3EjvGQ4OUeqYfTdzXFPod4wzQ9m49nl2q67mN5B7TKEMxgHmLq9ZoovLo8uSE4lWOM0g3fKFdONh3ghoxLI-YeAkuy-nPZe1o3cmtLr6Ok2mrnNSlZ3U7XdkHYl4ulDnAg1o5GATWYzlGPU27Go96zyjJ61l09x3JgFD0aqAs5H42QsoGq_aSUV_wXTorvL&lang=sage&interacts=eJyLjgUAARUAuQ==

Analysis in the general case

Proposition
The probability that Ltyj or [1.#1 is measured is asymptotically > % ~ 40%
with t uniformly distributed among [0, r[.

Thus probability .4(1 — %) of getting a "good” result y.

Fact: If N > 2r2, the period r can be efficiently recovered since % appears in lowest
terms in the continued fraction expansion of & and if r is large, t and r will most likely

be coprime (probability ~ of failure).

1
loglog r


https://en.wikipedia.org/wiki/Continued_fraction#Infinite_continued_fractions_and_convergents
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Shor’s algorithm



Shor’s algorithm (1994)
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Shor’s algorithm

(Probably) factors an integer N with quantum complexity
O((log N)*(log log N)(log log log N))

This is much better than the best currently known classical algorithm

that has complexity
O (el.Q(IOg N)% (log log N)%

)


https://en.wikipedia.org/wiki/General_number_field_sieve

A note on complexity

If N is an integer that can be written on n bits:
N <2" so log,(N) < n.

This is the natural parametrer to measure the size of an integer.
1 2
Factorization on a classical computer: (9(e1'9"3’('°g ”)3)
Factorization on a quantum computer: O(n?(log n)(loglogn)) => BQP

quasiexponential speedup



Factoring vs period finding

Suppose N = pg with p and g two distinct prime numbers.

Theorem (Euler)

For any integer a coprime with NV, we have a”" =1 mod N for

r=¢(N)=(p—1)(qg—1).

In other words: r is a period for the function f : x — a* mod N.



BPP reduction from factoring to period finding

To factor N = pq:

e pick a random integer a € [0, N[
e with high probability GCD(a, N) =1
e if x — a* mod N has odd period, pick another a

e so now we have an integer a of even multiplicative order 2r: a*" =1 mod N
N|a?—1=(a"—1)(a" +1)
e there is a 50% chance that GCD(N, a" & 1) are non-trivial divisors of N



Small example: N =21

Try a=4:

Try a=>5:

5 — 5°=4 — 5=20 — 5=16 —
but GCD(5% — 1,21) =1, GCD(5° + 1,21) = 21 X
Try a=2:

2 = 22=4 - 22=8 = 2°=16 —
and GCD(2% — 1,21) =7, GCD(23 +1,21) =3 v

=17 —

56 =1



Implementation

So we need a quantum implementation Us of the function
f(x) =a"“mod N.
Shor picks Q = 2" > N? in order to be able to apply postprocessing and considers the
function f(x) for x € [0, Q[.
If x is written in binary:
x=2""1bh, 1+ 4 2by +20h

then
X = (32”_1)bn,1 . (321)b1 . (320)b0



Implementation

Thus we only need to implement " multiplication by 2% mod N"

0 1 2n—1
Ue? FUe? U

This is actually the difficult part. One approach is to translate reversible classical
arithmetical circuits into quantum circuits + classical pre-processing



Quantum factoring: summary

To find a nontrivial factor of N:

e Pick Q@ = 2" large enough

e Choose a coprime with N randomly

Implement modular exponentiation f(x) = a* mod N as a quantum circuit

Apply QFT + classical post-processing to recover period R of f

Repeat until R = 2r is even and GCD(a" — 1, N) # 1, N

Output GCD(a" — 1, N)
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Shor IRL



Recent history of factoring

e 1977: RSA public-key cryptosystem, based on the difficulty of factoring large
quasiprime integers N = pq

Scientific American Challenge: factor RSA-129 ~ 2426
e 1981: Quadratic sieve
e 1994: RSA-129 factored (1600 computers)

e 1996: General number field sieve, RSA-130 ~ 230 factored

e Feb. 28, 2020: RSA-250 ~ 2829 factored (P. Zimmerman, INRIA)

2048-bit RSA moduli are considered out of reach for the next 25 years


https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html

Quantum computers might change that

Computing

How a quantum computer
could break 2048-bit RSA
encryptionin 8 hours

A new study shows that quantum technology will catch up with
today's encryption standards much sooner than expected. That
should worry anybody who needs to store data securely for 25
years or so.

by Emerging Technology from the arXiv May 30,2019




Quantum computers might change that

IBM unveils its first commercial quantum computer

Frederic Lardinols @frec ET - Jar aQ

AtCES, IBM o today announced s first commercial quantum computer for use outside of the lab. The 20-qubit

system combines into a single package the quantum and classical computing parts it takes to use a machine like
this for research and business applications. That package, the IBM Q system, is still huge, of course, but it

includes everything a company would need to get started with its quantum computing experiments, including all



How to factor 2048-bit RSA integers in 8 hours

Quantum Physics

How to factor 2048 bit RSA integers in 8 hours
using 20 million noisy qubits
Craig Gidney, Martin Ekera

(Submitted on 23 May 2019 (v1), last revised 5 Dec 2019 (this version, v2))

We significantly reduce the cost of factoring integers and computing discrete
logarithms in finite fields on a quantum computer by combining techniques from
Shor 1994, Griffiths-Niu 1996, Zalka 2008, Fowler 2012, Ekera-Hastad 2017,
Ekera 2017, Ekera 2018, Gidney-Fowler 2019, Gidney 2019. We estimate the
approximate cost of our construction using plausible physical assumptions for
large-scale superconducting qubit platforms: a planar grid of qubits with nearest-
neighbor connectivity, a characteristic physical gate error rate of 1073, a surface
code cycle time of 1 microsecond, and a reaction time of 10 microseconds. We
account for factors that are normally ignored such as noise, the need to make
repeated attempts, and the spacetime layout of the computation. When factering
2048 bit RSA integers, our construction's spacetime volume is a hundredfold less
than comparable estimates from earlier works (Fowler et al. 2012, Gheorghiu et al.
2019). In the abstract circuit model (which ignores overheads from distillation,
routing, and error correction) our construction uses 3n + 0.002n 1g n logical
qubits, 0.3n* + 0.0005n 1g n. Toffolis, and 500n + n? Ign measurement
depth to factor n-bit RSA integers. We quantify the cryptographic implications of
our work, both for RSA and for schemes based on the DLP in finite fields.

Comments: 26 pages, 10 figures, 5 tables
Subjects:  Quantum Physics (quant-ph)
Cite as: arXiv:1905.09749 [quant-ph]



Back of the envelope estimation

Today: 50 qubits
When would we have functional quantum computers with 2 x 108 qubits ?
Multiplicative factor of 400.000 ~ 218

18 doublings — assuming the continuing validity of Rose’s law

~ 18 x 1.5 = 27 years of safety



The uncertain future of modular arithmetic-based cryptography

Still: large-scale quantum computers would have a definite asymptotic quantum
advantage over classical algorithms. Indeed, for:

e RSA encryption and signatures (hardness of factoring)
e DSA signatures,

e elliptic curve cryptography (hardess of the discrete logarithm problem)

a quantum attacker breaks the system essentially as fast as classical users Alice and
Bob users are able to use it with the appropriate private key . ..

= ongoing NIST Post-quantum cryptography competition


https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Quantum factoring records

e 2001: 15 factored (IBM, Shor on 7 qubits)

e 2012: 21 factored (a =4, 1 qubit + 1 qutrit)
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" Compiled version of Shor's algorithm”

(see Pretending to factor large numbers on a quantum computer)



https://www.nature.com/articles/414883a
https://arxiv.org/abs/1111.4147
https://arxiv.org/abs/1301.7007

More recently: quantum annealing

[ 20 14 56 ]_ 5 3 fa Cto red First, we describe the general framework for prime fac-

torization as follows. Suppose that the integer N is the

number that needs to be factored, while p and g are the

prime factors, ¢.e., N = p x ¢q. Here, the factors p and ¢

[ ] 2017 29 13 1 1 fa Ctored can be denoted in binary form as {1pmpm—1...p2p11}bin
for p=2m+1 4 37 p;x 20+ 1 and {19,Gn 19201 i

for q. In this form, the factorization problem is to find

. the values of py, ..., P, 41, ---, ¢, that meet the restriction

° 2019 1099551473989 fa Ctored N = p x g. Recent work has shown that the m + n vari-
ables can be reduced to a significantly smaller number of

variables [27]. For example, the factorization problem of

. e N = 291311 reduces to the equations [27]:
Numbers having a specific shape: et e T e

pta=1
mte=1
Ps+gs =1

561534ec = 1101101101011001p;, it o =1 ®

P2g5 + P3qz = 0
P+ pigs =1,

291311dec — 1000111000111101111bm where the binary form of the factors are p =

{1000p501p2p11}pin and ¢ = {1000g501g2g11}uin. Since
the first three equations imply that p; = 1 — ¢; for
i=1,2,5, the equations become:

Gt a2 —2qq2=1

G2+ a5 — 20245 =0 (2

a1+ a5 —2q1g5 = 1,

which form a 3-variable binary optimization problem.


https://arxiv.org/abs/1411.6758
https://arxiv.org/pdf/1706.08061.pdf
https://quantumcomputing.stackexchange.com/questions/9204/the-algorithm-of-the-new-quantum-factoring-record-1-099-551-473-989
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